
Static Energy Analysis of
Low Level Programs

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in the

Department of Mathematics and Computational Sciences
at The College of Wooster

by
Patrick May

The College of Wooster
2024

Advised by:

Professor Drew Guarnera (Computer

Science)

© 2024 by Patrick May

Abstract

This work presents the theory and approach of a static energy analysis tool that

semi-automatically predicts energy cost of compiled programs within the ARM v8

assembly architecture. It discusses various background information that is required

to understand the methodology of modern software, including compilers, computer

architecture, etc. It also presents the concept of cost relations and upper bound static

cost analysis specifically, as well as sampling alternative semi-static approaches. A

Raspberry Pi 4 Model B is used as a testbench for dynamic energy benchmarking

and testing the validity of the static tool.

iii

To friends and family; and a more sustainable future

iv

Acknowledgments

Acknowledging everyone who has influenced and helped me on this journey is a

sisyphean task, but I shall do my best. First, to my advisor, Professor Drew Guarnera

for his suggestions and guidance throughout the IS process, and for serving a crucial

role in my entire computer science education at the College of Wooster. He has

been truly a wonderful mentor that I firmly believe is the standard for excellence

as an instructor. An additional thank you to Professors Heather Guarnera and

Daniel Palmer, for believing in me and my ability to complete this project. To my

family and friends, for constant support with a senior who was dead-set on doing

everything everywhere all at once. A named acknowledgement to Taemour Zaidi,

for being an amazing friend, motivator, and confidant through IS woes. To Alex

White, for being a wonderful friend who empathized with my procrastination of

this work. To my roommates Lyonel Fritsch and Aiden Lentz, for being wonderful

people and tolerating my esoteric computer science ramblings. A further mountain

of gratitude towards all my peers that have influenced my undergraduate education

in innumerable ways. Thanks to my coworkers and manager at Web, for keeping

me around even as a college student, aiding in my professional development while

also giving me enough space to excel in the tail end of my undergraduate career.

And a final special thanks to Dr. Samir Genaim for sharing direct access to their

PUBS solver executable.

v

Contents

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Figures viii

List of Tables ix

List of Listings x

CHAPTER PAGE

1 Introduction 1

2 Background 6
2.1 Compilers . 6

2.1.1 At a Glance . 6
2.1.2 Beneath the Hood . 8

2.2 Assembly Language . 10
2.2.1 Assembly Languages . 11
2.2.2 Tokenizing ARM . 13
2.2.3 Parsing ARM . 15
2.2.4 Abstract Syntax Trees . 16
2.2.5 Type Systems and Semantic Analysis 17
2.2.6 Intermediate Representations and Control Flow Graphs . . . 20

2.3 Modern CPU Complications . 21
2.3.1 Running a Program . 21
2.3.2 Caching . 23
2.3.3 Pipelining . 25
2.3.4 Branch Prediction . 28

2.4 Energy Analysis . 30
2.4.1 Static vs. Dynamic . 31

3 Program Cost Analysis 34
3.1 Recurrence Relations . 34
3.2 Cost Relations . 36

3.2.1 Cost Relation Extraction . 42

vi

3.2.2 Automatic Upper Bound Inference 47
3.2.2.1 Upper Bound Node Counting 51
3.2.2.2 Upper Bounding Individual Node Cost 53
3.2.2.3 Automic Upper Bound Issues 55

3.3 Practical Upper Bound Solver (PUBS) 57
3.3.1 Prolog Overview . 57
3.3.2 PUBS Interface . 61

3.4 Partial Dynamic Cost Analysis . 64

4 Implementation And Hardware Benchmarking 66
4.1 Static Energy Analyzer Process . 66
4.2 Hardware Choice . 69
4.3 Energy Testing Background . 70
4.4 ARM Testing Methodology . 73
4.5 Experimental Energy Per Instruction Results 76

5 Discussion 80
5.1 Example SEA Workflow . 80
5.2 A Non-SEA . 87
5.3 Challenges . 88

5.3.1 Static Analysis . 88
5.3.2 Hardware Testing . 89

6 Conclusion 92
6.1 Future Work . 92
6.2 Closing . 94

References 98

Index 106

vii

List of Figures

Figure Page

2.1 Levels of Programming Languages . 8
2.2 Broad Steps of a Compiler [51] . 9
2.3 ‘Null’ C Program . 12
2.4 ARM ASM from Figure 2.3 . 12
2.5 Simple Label Regular Expression . 14
2.6 3 Dimensional Table of Type Systems of Various Programming Lan-

guages . 19
2.7 32 and 64 bit register structure in ARMv8 22
2.8 Cache Heirarchy Model of Modern Processors 23
2.9 Generalized 4 Stage Processor Pipeline 26

3.1 Simple Foo() Method in C++ . 38
3.2 ARM ASM from Figure 2.3 . 38
3.3 Common Programming Paradigms [31] 58
3.4 Programming Languages Colored By Paradigm over Time [39] 59
3.5 ArrayReverse() Java Method Code [4] 61
3.6 Cost-Equation System in PUBS syntax of Figure 3.5 61
3.7 PUBS Executable Usage . 62
3.8 PUBS ArrayReverse() Partial Output 63

4.1 Semi-Automated Static Energy Analyzer Process 68
4.2 Raspberry Pi Testbench . 69
4.3 Energy Reading Multimeter . 69

5.1 C Code for PowerOf function . 81
5.2 PowerOf Compilation and Flags . 81
5.3 ARM Assembly of PowerOf function 82
5.4 Control Flow Graph for powerOf Assembly Code 84
5.5 Example of Possible PowerOf PUBS Input [4, 3] 86

viii

List of Tables

Table Page

3.1 PUBS/Prolog Syntax . 62

4.1 Static Current Consumption at Different Clock Speeds of Pi 77
4.2 Estimated Energy Per Instruction (pJ), integer operations 77
4.3 Estimated Energy Per Instruction (pJ), bitwise logic operations 77
4.4 Estimated Energy Per Instruction (pJ), floating point operation 78
4.5 Estimated Energy Per Instruction (pJ), move, compare, load, store

operations . 78

ix

List of Listings

Listing Page

4.1 Benchmark Instruction Test File Structure 74
4.2 addwith out read-after-write . 75
4.3 addwith read-after-write hazards . 75

x

CHAPTER 1
Introduction

The field of software development is rapidly evolving, as more and more

industries begin to utilize and rely upon technology to simplify, manage, and

modernize existing business functions. A large amount of developer effort targets

improving existing software along various benchmarks. Software systems are

optimized for speed, memory utilization, and sometimes code size itself [26]. Another

metric that software systems can be evaluated upon is that of energy efficiency. Energy

efficiency has a multitude of reasons for why it should be studied. For mobile

devices or any technology system that pulls power from a finite battery resource,

energy efficiency will improve overall device uptime. If the hardware stays the

same but with more energy efficient software, new life is breathed into a device

with its additional runtime without requiring hardware changes. On embedded

and low-level systems, energy usage may be limited by the amperage the circuit

board can handle, leading to a desire for minimizing average energy cost as well as

overall energy usage. Large companies that have warehouses of servers providing

cloud computing power must give real consideration to energy costs that arise

from day-to-day operations. Server farms that utilize more energy cost more from

the increased energy used, and also in additional resources being required to cool

high-power servers. In an enterprise situation, energy-efficient servers provide a

1

1. Introduction 2

different benefit compared to mobile devices through reducing running costs. All

different styles of computers use electricity as the energy necessary to run. This

electricity is generated through various means that does not have a positive or

neutral environmental effect [35]. Hence, the desire for energy optimization. If one

can better understand the energy required to perform various computations, then

alternative approaches can be attempted to reduce the power draw. All else held

equal, energy-efficient software is better for the environment.

Producing energy-efficient software is one of the goals of Green Software Engi-

neering. Green Software Engineering is a growing sub-field within technology that

aims to more directly consider the effects of software on its surroundings – the phys-

ical environment and society as it interfaces with it. Unfortunately, green software

engineering exists only on the fringes of modern-day development considerations,

which typically are centered around the speed of development, interoperability,

flexibility, and cost. Much of the work that has been done in the green software

engineering field focuses on evaluating fundamental blocks of the development

lifecycle. Some examples of existing research include comparing different program-

ming languages for energy efficiency [41], examining common areas of energy leaks

within simple scripts [40], or demonstrating a design framework that holds energy

usage as one of the main considerations [49]. Many further works are exploratory,

but generally, energy efficiency is a non-concern for the end-developer. Instead,

energy optimizations are left to compiler engineers, systems architects, and other

specialized developers that are separated from the end developer through layers

of abstraction. For example, enterprise developers need not concern themselves

with the ongoings within a compiler. Instead, the build and compilation process

is abstracted as a conversion of their work to a machine-runnable program. This

abstraction allows for the people developing the compiler to meddle with the

specifics as long as the end result remains invariant. As computational theory

1. Introduction 3

has advanced, various optimizations have been created for programs that strictly

improve the end result, through processes such as dead code elimination, loop

unrolling, in-lining, etc. These layers of abstraction reduce the amount of necessary

knowledge for any one individual developer, which allows for code to be created

quicker without one needing tedious knowledge of every single occurrence between

writing code and having a computer execute it. However, these abstractions also

serve as a barrier between areas of expertise which makes it more difficult for an

end-developer to improve their software design for the underlying technologies it

is built upon. Optimizing code for any specific reason is difficult, and is even more

difficult if one does not know where to start. Development tools such as profilers

and debuggers aid a developer in understanding more precisely what occurs within

a program. There is a distinct lack of energy efficiency tooling that increases the

difficulty for an end-developer.

Developing energy-aware software is particularly challenging because of how

non-standard it is. Many applications are profiled to find spots to increase speed.

These speedups generally can come from algorithmic changes that would likely

have the same effect on the software regardless of hardware platform. Going from

bubble sort to mergesort for large sets of data would give any program executed on

almost any platform a hardware speedup. Power usage is not as simple. Energy is

inherently more tied to hardware - the CPU manufacturer, the CPU architecture,

(non)existence of multithreading, and a multitude of other factors are at play when

trying to get a physical energy reading of running software on a computer. The same

program may take different amounts of energy on different computers, and even the

same computer, depending on caching and branch prediction within a CPU, making

a program run faster after multiple sequential runs [8]. Out of order instruction

execution may cause a program to perform unexpectedly when observed at a very

low level. Different operating systems or always-running background processes

1. Introduction 4

may have a hidden power draw that is not expected when analyzing a computer

for power usage. Multiple different computer architecturial pieces are moving all at

once when trying to understand the energy usage of any given software.

A computer science goal of this thesis is to better understand many of these

moving parts that are essential when operating in an energy-aware development

mindset. A software development goal of this thesis is to develop and demonstrate

the steps of a Static Energy Analyzer (SEA). A SEA serves as a program that aims to

predict overall energy costs of running a compiled program. At its most simple,

a SEA should be able to take in a source code project in its compiled, assembly

language form, and after various analysis steps, will output a predicted energy

‘cost’ of running that program. As a static analysis tool, a SEA does not have to

concern itself with tracking its own overhead, compared to dynamic analysis tools.

This is because static analysis interacts with a program at compile time (when a

program could be considered text), while dynamic analysis observes a program

while it is running. Dynamic analysis is a common software profiling technique that

involves running additional software that tracks various parts and pieces of the

target program as it runs. While dynamic profiling can easily capture the broad

strokes of large speed slowdowns and memory leaks [23], it is quite difficult to

dynamically profile a program for energy usage at anything beyond the total energy

usage of a program, due to the fact that constantly measuring energy statistics of a

system takes energy that adds overhead to the results.

The SEA implemented as a part of this thesis touches on many various aspects of

mathematics and computer science. It begins by parsing ARM Assembly (ARM ASM,

or just ARM), which is a computer language problem that involves understanding

ARM grammar. Then the SEA steps further into the world of compilers by translating

the internal representation into a control flow graph (CFG). From simplified CFG

form, I then semi-automatically extract a cost-relation for the program in question.

1. Introduction 5

Then, I attempt to automatically determine a discrete upper bound system for the

cost relation system through the use of the Practical Upper Bounds Solver (PUBS).

Automatically solving for an upper bound is difficult and has many limitations

which are discussed in Chapter 3, so an alternative is to run a program dynamically to

manually observe the required constants to solve the cost relation system. Separate

from the static assembly analysis portion, I benchmark a small computer to trace its

power usage for various small pieces of program execution. These power usage

statistics for individual assembly instructions become the basic ‘costs’ of which to

allow for a final answer of the cost-relation system created in a different step. I

then join the two experiments by mapping the underlying relations to individual

energy costs. Through this process, the static energy analyzer (SEA) estimates a

final energy usage for the inputted program.

The SEA’s energy estimation for a program can then be tested against empirical

test-bench data to determine the accuracy of the SEA compared to real execution.

CHAPTER 2
Background

To perform static program analysis, one first must understand everything that

goes into how programs work. In this chapter, I introduce background terminology

about key computer science concepts within this thesis, such as ARM assembly

(ARM ASM), compilers, abstract syntax trees (ASTs), and control flow graphs

(CFGs).

2.1 Compilers

2.1.1 At a Glance

As a static energy analyzer interfaces with compiled code, it is valuable to understand

how typical compilers work beyond the basics. At their most simple, compilers

exist as a translation tool, taking a source language to a target language [51]. One

novel implication from this definition is that many software tools we use everyday

are also compilers: web browsers translating html to an interactive web page,

word processors compiling a rich text document (markdown, word) into another

file format such as pdf or html, compression tools targeted towards a language

utilized a reduced representation, etc. It is useful to understand the broadest form of

‘compilers’, but these are not the typical compilers that are referred to when working

6

2.1.1 At a Glance 7

in a computational science context. The compilers of focus are compilers that

convert higher-level language programming code into low-level assembly language

and machine code. Every compiled programming language has (at least) one

compiler available to it, such as gcc and clang for C, rustc for Rust, zig build-*

for Zig, etc. Compilers are not interpreters, which are alternative software tools that

directly execute source code, compared to the intermediate machine code a compile

outputs. Modern programming languages combine various elements of compilers

and interpreters, such as Java’s workflow of compiling a project to bytecode, which

is then interpreted by a Java Virtual Machine interpreter. Other languages leverage

a process known as Just in Time compilation (JIT) to translate interpreted bytecode

into machine code as needed. Various high level programming languages use

various pieces of compiler and interpreter methodologies. For creating a Static

Energy Analyzer (SEA), the simplest approach is to comprehend the assembly

language representation of a program all at once – meaning interpreters, JIT, and

other schemes are not of focus for this work.

Compilers do not simply translate code – they also improve code [51]. A

compiler may know of specific optimizations for the current system architecture

that it can apply. Essentially, a desire to – at no cost to the end developer – make

programs faster. The simplest possible example of this is stereotypical C compilers

with -O1, -O2, -Ofast, ... optimization flag options. Within energy-aware

computing, prior work has been done trying to create compilers that optimize for

energy efficiency, to middling results. Modern compilers typically produce machine

code, which is extremely difficult for humans to read. A step up in complexity

from machine code is assembly, which with the right compilation flags, can be

outputted as a side effect during normal compilation. Figure 2.1 loosely illustrates

the high to low level programming language spectrum. Modern day development

is infrequently done using assembly language, as it is still difficult for humans to

2.1.2 Beneath the Hood 8

Figure 2.1: Levels of Programming Languages

understand and lacks many higher level programming constructs that stepping one

level up the language complexity ladder provides.

As part of generating input for the SEA, multiple simple programs written in

various higher level languages (C, to start) will be compiled and have Assembly

output from them. Assembly language is still tightly tied to the hardware it runs on,

the most common divide appearing between x86 and ARM instruction sets. Further

assembly architecture discussion can be found in Section 2.2.

2.1.2 Beneath the Hood

The process of taking a source code project to an executable includes multiple steps,

compilation being only one of them. After compilation programs must be processed

through an assembler and a linker. An assembler consumes assembly code and

produce object code, which is a nearly direct machine code translation of assembly

code [51]. The object code is still incomplete, as it is missing final memory locations

that will be used, as well as connections to prewritten library code that the object

file is using. Then, the object file(s) pass through a linker that fills in these memory

location and library code gaps. Modern ‘compiler’/build systems typically do all of

these steps beneath the hood, but a distinction is necessary because a ‘compiled’

2.1.2 Beneath the Hood 9

Figure 2.2: Broad Steps of a Compiler [51]

program’s asm is different from a ‘complete’ program’s asm, which may mean

different things for my SEA. Currently, the SEA is built to work with ‘compiled’

programs – that is, before linking with builtin libraries and other binaries occur. To

access the assembly outputs of modern compilers, various command flags must

be used, -S being the most common for C & C++. If one instead wants to look

at the assembly representation of a complete, linked program, they must instead

disassemble the executable file itself, usually through the use of a utility such as

objdump [45].

The ‘Compilation’ step in the code-to-execution process has various parts within

it, as well. Scanning the program, also called lexxing is the process of taking

in raw text and identifying tokens from the stream of characters. This is similar

to processing words in natural language, however programming languages can

have very different rules as to what constitutes a token. After scanning, the

sequence of tokens is then fed to a parser, which combines sequences of tokens

into broader sentences and expressions using the grammar of the source language.

These expressions are woven together to create an abstract syntax tree, an abstract

representation of all expressions and grammar from the program. Semantic routines

then traverse the AST deriving further meaning from expressions, such as type

inferences [51], expression expansion [12], etc. After semantic analysis, the code

has been transformed into some intermediate representation that is different from

the source, but not assembly/object/machine code. Optimizers are applied on

the intermediate representation in order to improve the program on a variety of

10

dimensions. Typically, optimizers exist to reduce code size, increase program speed,

or increase program efficiency. However, optimizers can really do whatever the

compiler designer desires. Intermediate representation exists as a reduced form

of a high level language but imbued with the constraints of hardware specific

concerns. After optimization routines have been run on the IR, the compilation

step is complete after passing the IR through a code generator to finally produce

assembly code [51]. As discussed prior, modern ‘compilers’ also include the further

steps of assembly and linking.

A SEA must perform some compiler-like tasks. Instead of translating high

level source code to assembly as a typical compiler, the SEA will first tokenize

assembly language as an input. Assembly is not a superbly difficult language to

parse, however the hardware and software specificity of it do mean a true universal

grammar is not easily found [18]. After scanning and parsing of assembly, the SEA

will have built an ASM AST - assembly language abstract syntax tree. Hence, the

justification for an overview of compilers – one could consider the SEA a compiler,

as it translates assembly to energy cost relations.

2.2 Assembly Language

Assembly language arguably the lowest level of programming possibly palateable to

developers. ‘Assembly language’ is a misnomer – multiple assembly languages exist.

The most common assembly languages (ASMs) commonly discussed are x86 and

ARM asm, although other assembly languages exist for esoteric hardware designs

[42]. Assembly language is good for being the final step before being converted

to machine code. Assembly language compiled from a higher level language

is not unique, it will differ based on compiler versions, optimization flags, etc.

Assembly languages are more readable than machine code as it is not just a stream

2.2.1 Assembly Languages 11

of hexadecimal data. Assembly languages are line-oriented [42]. Each language

statement is on its own line, with multiline statements only available through special

line-continuation character. Each line of assembly code may be labeled, and will

contain an operation field, operand field, and an optional comment field. Refer to

Figure 2.4 for a simplified asm example program.

2.2.1 Assembly Languages

x86 assembly is an older assembly language that is paired with most modern

computers. Being older, and for the longest time, being the only real architecture

option, has led to X86 being quite complex as it tries to maintain backwards

compatibility while also introducing new features as new hardware features are

released [30]. x86 is a classified as a Complex Instruction Set Computing (CISC)

assembly language. CISC style assembly has complex instructions that could

perform multiple fundamental machine instructions in one assembly instruction.

It has less general registers, more complicated addressing modes, and more data

types compared to alternative assembly styles [37]. Since CISC is complex, modern

processors have a host of specific optimizations on a new level below assembly

yet above machine code: microcode [30]. ARM is comparatively a more modern

assembly language that is classified as a RISC: Reduced Instruction Set Architecture.

RISC is an assembly style that typically has fewer possible instructions that are

simpler and more general than instructions in CISC. Instructions in RISC are one

word or less, and each can be expected to be completed in one clock cycle. Of interest

to the energy-conscious developer is that RISC (and ARM Assembly, by extension)

uses less power than CISC processors. In modern contexts, there is no significant

difference in instruction counts of a program compiled to ARM or x86. However,

x86 architecture allows for more hardware specific micro-optimizations that means

2.2.1 Assembly Languages 12

Figure 2.3: ‘Null’ C Program

Figure 2.4: ARM ASM from Figure 2.3

x86 is generally more performant than ARM, but not due to the instruction set itself

[9].

ARM is the assembly language of choice for this thesis because it is a RISC-style

assembly language. As a more modern development and simplicity compared to a

complex instruct set architecture (ISA), it is easier pick up and account for the many

constant factors of program execution from an architecture standpoint. Mobile

devices are largely ARM based at this point, and (as of 2023) other device families

are adopting ARM as a worthwhile platform as well. Apple silicon, such as the M*

and X* chipsets which are ARM based, are examples of ARM ISA adoption.

Even within ARM asm, multiple versions exist that have various limitations.

The original ARM specified in the 90s that was part of Acorn computers had only

about 50 assembly instructions [6]. As processors and hardware has improved,

ARM versions have added more operations. For ARMv8 specifically, there are

around 354 specific instructions in the specification [6]. This being said, accounting

for different variants of operations from single instruction multiple data (SIMD)

and scalable vector extension (SVE) sets, this count may be as high as 1300 possible

instructions including variants. ARMv8 is still RISC, as the instructions themselves

are still simple, there are just more possible simple instructions as hardware has

improved. For reference, x86_64 (a very common CISC assembly language) has

2.2.2 Tokenizing ARM 13

at least 981 operation aliases/mnemonics and around 3,700 instruction variants.

ARMv8, specifically AArch64, is the instruction set of the Raspberry Pi testbench

that is testing the SEA [47]. To extract cost relations and create energy mappings to

each instruction in an assembly program, one first must understand what ARMv8

assembly looks like.

2.2.2 Tokenizing ARM

The Static Energy Analyzer (SEA) reads ARM assembly as input and first must

perform the first two steps of a compiler, scanning and parsing. Tokenizing

assembly (asm) is not a complicated process, as discussed prior, there are only 4

main types of tokens that need to be considered:

• Labels main:, LFE0:, ...

End in a colon, alphabetical first character followed by alphanumerics or

specific symbols. Allow for spots in the assembly code to be referred to

directly.

• Operation mov, ret, ldp, ...

Are either 3-4 letter mnemonics that have a direct machine instruction, or

assembler directives/pseudo operations that start with a ‘.’ (dot). Directives do

not have a direct machine instruction, instead giving the assembler program

specific instructions that are typically hardware specific [42].

• Operands sp, fp, x20, 75, main, ...

Things that are being operated upon by the operation field prior. Operands

can be either assembler names (such as labels or registers), programmer names

(such as variables or constants), and literals (explicit values, i.e. 42). Each

operation may have 0 to 3 operands, inclusive [42].

2.2.2 Tokenizing ARM 14

• Comments comments come after ‘@’ symbol till end-of-line

Freeform text that is ignored by the assembler, human readable text analagous

to any other programming language. Some styles of assembly instead use ‘;’

as the comment delimiter

Of the 4 fundamental sections of an assembly program, only 3 are absolutely

necessary, as comments can be ignored if desired.

When learning how compilers tokenize input files, the concepts of regular

expressions and finite state machines are used to represent how stream of characters

are classified into streams of tokens. Regular expressions are sequences of normal

and special characters that allow for representing and matching multiple possible

tokens. For example, we could define an ARM ASM label regex as shown in 2.5.

[a − zA − Z][a − zA − Z | 0 − 9]∗ :

Figure 2.5: Simple Label Regular Expression

which can be interpreted as an alphabetical first character, followed by any

number of alphanumerics and ending with a colon. A regular expression can

then expanded into a finite-state-machine, which mutates state based on what

character it sees next, and upon reaching desired end characters emits a complete

token. Since assembly language is simple and rigorously constructed, abstracted

formal lexxing techniques are not fully needed, given the lexxer is constructed to be

allowed some additional information about the file it is tokenizing. For example,

assembly is line oriented, so on each line the 4 token fields come in the same order,

separated by a whitespace of some form (a tab by convention). With this additional

information, one can tokenize based off of both position and typical finite machine

style approaches. Some fields, such as the operand field, may have a variable number

of individual operand tokens. In this case, regular expression representation and

FSM scanning is useful.

2.2.3 Parsing ARM 15

Each line of assembly may contain each field (label, operation, operand, com-

ment), but typically do not. Not all lines are labeled, nor are all lines commented.

Some lines are only comments or only whitespace – to help with readability. With

these rules, we can statically transform an assembly language text file to a stream of

tokens. Recall that throughout all of this, the SEA has underlying knowledge of

how much energy running each assembly instruction takes. Why can we not just

multiply each energy cost by the frequency of its appearance in this assembly token

stream? We still have not considered some fundamental constructs of programming:

recursion, looping, conditional logic, etc. We have a sequence of tokens, essential

‘words’ in assembly, yet we have no comprehension of what they mean as a whole.

To start looking at ‘sentences’ we have to parse sequences of words.

2.2.3 Parsing ARM

The act of parsing tokens is analagous to checking if a string of words in natural

language makes sense [51]. Parsing a programming language is typically done

through the use of a context-free grammar. Context-free grammars are a set of

rules that formally describe permissible sequences of tokens from a scanned input

stream. They allow recursion and thus are a much more powerful tool than regular

expressions in terms of the possibility space of things that they can represent.

Context free grammars do have an ordering based on how much complexity they

permit. LL(1) grammars can parse an entire sequence just by looking at the current

token and one token forward [51]. LR(1) grammars are more powerful as they allow

more types of recursion, but this also makes them more complicated to perform by

hand. Assembly is a strict and reduced language, so many of the formalities and

special features that come from more difficult context free grammars are unneeded.

Since the assembly language under consideration is being output from a valid

program, errors are impossible barring compiler bugs, so the checking a program

2.2.4 Abstract Syntax Trees 16

for validity is unneeded. From parsing, operations and their operands can be linked

together to form individual blocks of execution. Some of these blocks contain

sentences that explain movements that the SEA wants to understand (conditional

logic, loops, etc.) in the form of comparisons, un/conditional jumps, etc. A context

free grammar representation of ARM is not short, as essentially every mnemonic

must have its own defined sequence of allowed operands following it. If we forfeit

some of the formality and rigorousness of a proper context free grammar description

of ARM, the grammar can be described much more tersely. There is significantly

more depth and possibilities for how various programming languages are parsed

with various methods, but they are not of interest nor in scope of this work.

Parsing a language can be done with a few different goals in mind, such as simple

validating the conformance to a certain standard, interpreting a program to find an

end result, or translating a program to something else through the intermediate

construction of an abstract sytnax tree. Parsing a program to attempt to interpret

an end result is different from actually executing the program. At the parse step,

the program is still being observed statically, and such there are many unknowns to

the compiler. Tools exist for static analysis estimation of a program, similar to the

idea of a static energy analyzer.

2.2.4 Abstract Syntax Trees

Abstract syntax trees (ASTs) are common products of the parsing steps in compilers.

Alternatively, sometimes the parsing step yields a parse tree or just checks sentence

structure for validity. For higher level languages, an AST is a tree that represents the

entire structure of sentences within an entire program. Trees (from a graph theory

perspective) are connected, acyclic, undirected graphs. In computer science, trees

also have an imbued heirarchical structure, such that each node has one parent and

any number of child nodes. Thinking back to Figure 2.2, the static assembly text file

2.2.5 Type Systems and Semantic Analysis 17

has been scanned into a stream of tokens. That stream of tokens has now been parsed

into sentences of token relationships. The parsing step can do a couple different

things with these sentences, but commonly it outputs an AST.

A simple AST is constructed of three types of nodes, declarations, statements,

and expressions.

• Declarations - something that state the name, type, and value of a symbol. For

assembly programmers, literals, labels, and variables are forms of declarations.

• Statements - indicate an action to be carried out that changes the state of the

program. Language constructs such as loops, conditionals, and returns.

• Expressions - are combinations of symbols and values that can be processed

and reduce to a value. Some higher level languages can have expressions

produce side effects that change overall program state during expression

reduction as well.

If one desired to perform the program computation itself, one has to perform a

post-order tree traversal tracking the change in value of an expression at each

operation step. For assembly, the types of sentences that need to be represented

are comparatively limited, with instructions being the primary concern. We can

further form AST nodes based off each operation and its immediate operands. Since

assembly is line based, we can presume that each instruction block typically follows

the preceeding block. Here is where considerations for conditional logic and jumps

come in. Our AST must branch when conditional logic occurs.

2.2.5 Type Systems and Semantic Analysis

After an AST is emitted, semantic analysis is performed on the AST to ensure that

the program follows the rules of its underlying type system. A type system and

2.2.5 Type Systems and Semantic Analysis 18

its associated programming language have a few axes to distinguish themselves.

Commonly, these are safe/unsafe, static/dynamic, explicit/implicit.

Safety from a type system is determined based off of what one could theoretically

do with a valid program in that language. C is unsafe and allows for arbitrary

manipulation of program data. Safe languages have checks that prevent a program

from executing unpredictably [51].

State of type checking is another common axis. Statically typed languages

perform all type checking at compile time, while dynamically typed programming

languages are able to do type checking during runtime. For compiled languages,

this means that after compilation, all type checking has been complete and type

information can be discarded in the machine code. For dynamic languages, the

type information is available during runtime and is used whenever a variable is

interacted with [51].

Inference. Type systems commonly can have either explicit typing, where the

code and programmer directly explains the types of variables and other program

constructs. In an implicitally typed system, the compiler (or interpreter, as

interpreted languages have type systems too) infer the type of variables and

expressions as much as possible. Implicit typing allows for more terse code, but

allows for a program to operate in undefined behaviour if the inferred type the

compiler settles on is different from the type the developer believes is being used

[51].

Refer to Figure 2.6 to see a loose breakdown of various programming languages

and where their type systems fit on these various axes. Many modern, newer

languages fall into the safe, explicit, statically typed category. Multiple languages

also have support for both explicit and implicit typing, such as C++ after 2011

with the use of auto [25], Python after 3.5 with type annotations [59], etc. Unsafe

languages do have their purpose, since the possibility space of legal programs

2.2.5 Type Systems and Semantic Analysis 19

Figure 2.6: 3 Dimensional Table of Type Systems of Various Programming Languages

able to be written is larger than that of a safe language. For example, the ability

to perform raw point arithmetic has its uses for various embedded and operating

systems level tasks. These operations can be expressed in an unsafe language

while the programs’ memory ambiguity makes it more difficult to write in a safe

language. Unsafe code gives the developer much more control over the underlying

system since it is more “hands off”. This means that an unsafe language trusts the

end-developer to not make mistakes that would cause issues. These unsafe systems

are commonly useful in specific technical situations where ‘hacky’ solutions are

desired, for performance, readability, or various other reasons [42, 51, 4].

While semantic analysis is a large step within compilers and where many

programming languages make themselves unique from the many thousands of

others, it is not the main goal of this paper. Assembly language is by definition an

unsafe language, and typically contains no typing at all. Fear not, since the outputted

2.2.6 Intermediate Representations and Control Flow Graphs 20

assembly is coming from a compiler, we don’t need to do any semantic analysis on

our ARM assembly abstract syntax tree.

After semantic analysis in the compilation process comes intermediate represen-

tations and possible optimizations associated with IR.

2.2.6 Intermediate Representations and Control Flow Graphs

Semantic analysis is an important step in the compilation for higher level pro-

gramming languages to lower levels, however it does not significantly alter the

underlying representation of the parsed code, it may still be in the form of an AST.

Optimizations are an immensely broad step within a compiler, however they are

by no means the focus of a simple analysis tool. For posterity’s sake, the modern

optimization approach uses various modules that apply different optimizations on

a program’s intermediate representation (IR), ideally where the optimizations are

applicable in any order. After all the optimizations permitted by the compiler (and

compilation flags), the IR is finally emitted as assembly code.

Of particular interest to us is the intermediate representation of a program. Many

types of IRs exist, one of particular renown is the Low Level Virtual Machine (LLVM)

toolchain’s IR [20]. Abstract Syntax Trees are quite powerful representations of a

program, but they are bloated with significant information that is not immediately

important for optimizations.

A common intermediate representation form is that of a control flow graph

(CFG). Control flow graphs are more broad than that of an AST, as they represent

a high level structure of a program through the medium of a directed graph that

may or may not be cyclic. Each node of the graph is a basic block that consists of

sequential statements. Each edge of a graph represents a possible flow between

basic blocks. Based off these rules, a CFG is able to better represent the difficult

constructs that an AST cannot encode well: conditional and looping constructs.

21

Conditionals result in branches in the graph, while loops are represented with

backedges. A CFG imbues further structure compared to an AST. For example, a

looping program in a CFG connects nodes in the loop sequentially with a backedge

at the end of the loop, while an AST would just contain all nodes as direct children

[51].

Given the construction of a CFG from an assembly representation of code, we

can start to expand upon the types of programs we can provide an estimated energy

cost for to programs that include conditionals, loops, recursion, etc. Prior to further

SEA development, consideration must be given to all the computer hardware that

sits between a program and its execution, and all the additional hardware and

processor level optimizations that end up making a program execute not as one

would initially expect.

2.3 Modern CPU Complications

Taking a step away from ARM as a platform, there are hardware processes in

modern computers could have an effect on the accuracy of a SEA. While some

of the following examples discuss arm specifically, some other sections are more

applicable to CISC architectures instead.

2.3.1 Running a Program

Assembly code output from a compiler is quite close to its final machine code, only

missing small pieces of information that give context as to where the executable

program fits into the computer at large. The addition of these minor parts does not

significantly change the assembly code, so from ASM one can trace exactly how a

program executes. When a program is executing, it is contained in the operating

2.3.1 Running a Program 22

system in various segements, typically thought of as the text section, data section,

the stack, and the heap.

The .text pseudo operation in an ARM assembly file is used to signify the text

segment of an executing program [42]. Assembly code functions in an environment

that has a few general purpose registers to use. For 64-bit ARMv8, there are the

16 32-bit registers as well as 32 64-bit registers that reference the same location in

memory, but just more of that memory. For example, w1 and x1 are 32 bit and 64

bit registers that are stored in the exact same location, just with w1 missing the

additional 32 bits accessible by the x1 register, as seen in Figure 2.7.

Figure 2.7: 32 and 64 bit register structure in ARMv8

Without getting too sidetracked into exact details of how assembly language

operates and constrains within the system, the primary goal here is to understand

that in running a program, an operating system allocates space for the program,

which the program operates from when executing. During execution, the program

flows line by line while jumping to various code sections based on current registers

and execution mnemonics [6]. X86 platforms function the same way, just with

possibly more complex individual instructions being executed.

The crucial point is that operating systems could exert control over how a

program executes that the developer is not considering. When doing dynamic (run-

time) analysis, perhaps other parts of the OS interfere with how much additional

memory the program is able to use, force its process to be scheduled poorly, etc.

These effects are not a concern for a SEA energy cost estimation, but could effect

empirical test bench data.

2.3.2 Caching 23

A simple form of an energy analyzer would be to count the number of instructions

that occur during execution, and then multiple each instruction by an estimated

average energy cost of that instruction. Adding this all up, we could theoretically

get an energy prediction for a program that minimizes the noise of background

processes [28]. However, some factors can change the actual amount of energy

consumed by executing a sequence of machine instructions that can be thought of

as assembly code.

2.3.2 Caching

Cache models have been a part of computers since the 1960s [13]. Caches are

hardware constructs, typically within the CPU itself that serve allow for significant

speedups. The methodology behind caching is to store information that a program

may want to reuse so that there is not a delay from fetching the information

from memory. Cache existence and configuration differs drastically by hardware,

however industry trends exist. Cache solutions usually exist in cache heirarchies,

as seen in Figure 2.8.

Figure 2.8: Cache Heirarchy Model of Modern Processors

2.3.2 Caching 24

Practically all modern processors have L1 cache, which is sometimes split into

L1 D and L1 I portions, for data caching and instruction caching, respectively.

Increasing in scope, most computers also have an L2 cache that has additional

space to store more data than the L1 D cache, but is physically further from the

processing core and thus is slower than L1. L3 cache is a further step from level 2.

Some modern computers do not have L3 cache, and some specialized computing

devices have additional caches beyond L3. All of these caches are checked prior

to finally reaching out into regular RAM (called ‘memory’ in Figure 2.8) for the

information needed. A cache is a small storage of data or processes determined

to be useful for the program in the future. Modern computers are incredibly fast,

so much so that waiting for data from memory can be a non-trivial slowdown to

computation. Caches alleviate this by keeping a curated amount of pertinent data

in a place physically closer on the hardware, which is also more accessible through

higher bandwidth channels than RAM. Each level of cache gets slower to access,

but also larger in the amount of things it can store. Algorithms for how to choose

which information is important to store in a cache are beyond the scope of this work.

These speedups caches allow mean a computer is commonly checking if certain

data is stored in a cache, but as programs are easily larger than cache sizes, it is

possible that cache misses occur, which is when a cache is searched for an item that is

not found, so instead the computer slows down to search the next level of cache

(or regular memory). Cache misses are one metric for analyzing performance of

programs that is based on understanding and optimizing a program to minimize

reaching up and beyond its caches.

In the context of constructing a SEA, cache models introduce two potential

problems. When trying to benchmark individual assembly instructions during

runtime, how much caching should we expect the computer to use? If the test-

ing software is written to maximize cache misses, then the average energy cost

2.3.3 Pipelining 25

per associated instruction may be a significantly higher worst-case bound than

desired, if the goal is to compute an “average expected energy” cost per instruction.

Conversely, if the test assembly program utilizes too much cache, it could make

the end instruction cost estimate naively optimistic. This poses a general question

in the realm of static analysis, can cache hits and misses be predicted? Cache

models and computer hardware engineering are growing increasingly complex as a

way to extract performance improvements from nothing, however this complexity

makes compile-time inference incredibly difficult to impossible. Therefore explicit

considerations for caching are not a part of this project because proper cache systems

are beyond the scope of this work and a “normal” amount of cache misses will be

implicitly included in the instruction energy cost estimations.

2.3.3 Pipelining

Modern computer processors have pipelines. The length of the pipeline differs based

on architecture style (RISC/CISC) and individual hardware [36]. Each machine

instruction can be broken down into different stages of execution. While pipeline

stages differ depending on any number of factors, a simple pipeline could consist

of 4 stages: fetch the instruction, fetch the operands, execute, write results. For

example, a simple pipeline attempts to build up to instruction flow capacity such

that all 4 stages of instruction execution are happening in parallel, with each step

corresponding to a different instruction, as seen in Figure 2.9 [37]. This pipelining

allows for instructions to be ready to execute as soon as a prior instruction finishes

execution, compared to having to wait for fetching of the instruction and operands

first. One could envision pipelining as splitting a processor into parts equal to the

number of stages in the pipeline, and then executing the various stages of different

instructions in parallel.

2.3.3 Pipelining 26

Figure 2.9: Generalized 4 Stage Processor Pipeline

The classic RISC pipeline is broken down into 5 sequential stages: Instruction

fetch, instruction decode and operand fetch, execution, memory access, register

write back [37]. A full pipeline typically implies a faster processor, as instructions

can generally be executed faster if all parts of the processor are being used at

any moment. Alternatively, non-pipelined processors, sometimes referred to as

multi-cycle processors, carry out individual instructions from start to finish (and

then begin carrying out the following instruction) [37]. Nearly all modern day CPUs

have pipelines of various length due to obvious benefits of pipelines such as faster

execution, reducing duplicate work, and allowing for various optimizations [46,

21]. The additional effort required to control the steps of the pipeline does increase

circuit complexity, but execution speed is increased significantly to more than offset

increased energy usage for a pipeline [37]. Thus, pipelining is a nearly ubiquitous

2.3.3 Pipelining 27

in modern chip design. Similar to caching, pipelining is something that is worth

knowing exists, but is fine tracking and accounting for in this project is not a focus.

Nearly all modern computers have some form of pipelining, so another consid-

eration is understanding how pipelines effect energy consumption based on the

programs that are being fed through them. Pipelined processors are at their best

when they are performing the preparation stages for incoming instructions while

executing current instructions. A hidden assumption in most underlying models

of assembly code is that each instruction is completed before the next instruction

executes. For pipelined processors, this is not true, can lead to the rise of hazards.

Hazards are issues that arise when the following instruction in the pipeline cannot

be executed in the next clock cycle [36]. Hazards are broadly split into three possible

categories: data, structural, and control.

• Data hazards occur when upcoming instructions depend on the data of

prior instructions within the pipeline. This hazard is analagous to a race

condition in multi-threaded programming, where different parts of the proces-

sor (“threads”) are attempting to interact with the same underlying register

(“data”) [36].

• Structural hazards occur when multiple pipelined instructions are attempting

to use a shared processor resource (or structure). For example, if multiple

instructions were entering the execution phase at the same time but all

attempting to use a singular Arithmatic Logic Unit [36].

• Control hazards occur when a pipeline pre-emptively follows an incorrect

control flow that means resultant computation has to be ignored. These often

arise from incorrect branch prediction [36].

Many approaches exist to deal with hazards, but most simple is the concept of

bubbling. Bubbling is an action performed by the control logic unit on a processor.

2.3.4 Branch Prediction 28

During the initial stages of a pipeline, control logic checks if the inputted instruction

could lead to a hazard occuring. At this point, control logic will buffer the pipeline

with nop (no-operation) instructions such that hazards are avoided. This does stall

the pipeline, which causes a program to take longer to execute, as the computer is

not operating with a filled pipeline, instead being filled with “bubbles” [36]. Data

hazards can be resolved through various means, some of which increase latency

(such as bubbling [36]), some of which attempt to avoid needing bubbling (such

as out-of-order execution or operand forwarding [11]. The specific architectures

behind these different approaches and their effects on energy consumption is

not a focus of this thesis, but it is important to understand that certain parts of

programs lead to the rise of data hazards, which generally slow the processor

down, causing longer execution time and increased energy usage. Alternatively,

given lucky branch prediction and out-of-order execution, some programs may be

computed non-trivially faster than expected. Anecdotally, programs with a high

degree of possible branches will perform significantly better on processors with

branch prediction after executing a couple times, as branch prediction caches adapt

to how the execution actually occurs. For testing purposes on a computer with

branch prediction, consideration to avoid unrealistic real world performance can

be achieved through running different tests in sequence, instead of repeating an

individual test multiple times [50, 11].

2.3.4 Branch Prediction

Given a long enough pipeline, branch prediction is a desireable feature for a

processor to perform. ARM processors have comparatively short pipelines (4̃-6

stages [47]), compared to typical desktop computers with X86 architecture that are

have longer pipelines, typically in the 14-20 stage range. One other specification

of modern computers are processors considered to be“superscalar”, allowing for

2.3.4 Branch Prediction 29

multiple instructions to be executed in parallel. These processors have quite long

pipelines to manage synchronicity of the multiple instructions in one cycle[48]. The

length of the pipeline will affect how much of a slowdown bubbling introduces, the

longer the pipeline, the longer the processor must stall before resuming normal

execution. In an attempt to lessen the need for bubbling the pipeline, when a

branching construct appears in the program (such as an if statement), the processor

will follow some of the overall possible branches until it is certain about the outcome

of the if statement (generally when the branch conditional instruction exits the

pipeline). If the chosen branch was correct, the processor can continue executing

as normal. If the predicted branch was incorrect, the processor must instead throw

away all computation after the faulty prediction and begin with an emptied pipeline

on the correct branch (typically through the use of a process called pipeline flushing

[36]).

When attempting to analyze branch prediction and branching behaviour from a

static analysis standpoint, a few approaches exist, with varying levels of optimism.

Static estimations range from assuming perfect branch predictions to absolutely

imperfect branch predictions. Generally, the variance from branch prediction

accuracy is a relatively tight band, as pipeline length is nearly never comparable to

total instruction count. For example, a 10,000 instruction program and a 30 stage

pipeline that gets invalidated 10 times is, at worst, 300 wasted instructions, which

means pipeline flushed wasted only 3% of overall instructions. Now consider that

branch prediction is surprisingly accurate, and pipelines are usually much shorter

than 30 stages. Hence, the “only” difference in a pipeline stall is a pipeline flush

at each failed branch [11]. From an energy analysis standpoint, branch prediction

accuracy is yet another complication that effects energy estimations of a program.

Since ARM processors have comparatively short pipelines compared to their CISC

style counterparts, many ARM processors do not support branch prediction [6].

30

Thus, when developing a SEA, additional consideration should ideally be given at

branches for forced slowing of the pipeline, but the increased effort of pre-traverse

a decision tree determining branch prediction costs [11] is beyond the scope of

this work. One other general solution to certain hazards in a pipeline is through

out-of-order execution, which some ARM processors support [6]. Out-of-Order

execution allows some data hazards to be avoided by reordering their execution

sequence. CISC superscalar processors do experience performance speedups from

out-of-order processing, but this does come at an increased energy cost due to

necessary control logic [56]. However, out-of-order execution is not a main concern

for this work as it does not significantly effect an energy estimation for a typical

ARM program due to the testbench’s ARM architecture which does not benefit

significantly from out-of-order execution.

2.4 Program Analysis

After modern software is written, a large portion of it’s lifecycle is spent in mainte-

nence. To perform various upgrades, optimizations, and changes on an existing

system, the program is analyzed with a specific goal in mind. A different goal will

effect the style of program analysis that is performed. The broad, applied goals of

program analysis are for either program optimization or correctness [60]. In simple

terms, existing code is typically analyzed to increase performance or fix existing

bugs. For example, the algorithms within programs are commonly analyzed for

asymptotic efficiency represented with Big-O notation as an analysis tool [15]. In

addition to amortized computational time, memory utilization is another axis upon

which programs are commonly analyzed [15]. These results of these analytical

methods can then be applied to help optimize programs. Alternatively, for extremely

important code such as that being run on potentially dangerous vehicles (airplanes,

2.4.1 Static vs. Dynamic 31

power grids, etc.), programs are analyzed with a goal of verifying that no issues

are possible during runtime. One step closer to computer programs themselves

lives a smaller field of research exists around the concept of Worst Case Execution

Time (WCET) that looks for estimating practical execution time limits of a given

program. As one descends toward real-world program analysis based on practical

implementation rather than the theoretical field of algorithm analysis, assumptions

can be made that asymptotic models cannot. Most program analysis techniques

spawned as ways of verifying properties about production software [60]. Significant

difficult appears based on the rigor that some techniques desire because of two

findings in computer science, Rice’s Theorem and the Halting Problem [60, 54,

34]. Further discussion about the problems these two findings create is discussed

in Chapter 3. One approach to account for these theoretical problems is to tie the

analysis directly to the real-world operation of the program, by analyzing a program

during runtime.

2.4.1 Static vs. Dynamic

Dynamic analysis deals with understanding a program during its runtime. Also

referred to as “profiling”, dynamic analysis aims to further understand how a

program operates by integrating itself into the running program or through running

in parallel to the program in question and polling operating-system level channels.

Regardless of how a dynamic profiler interacts with an executing program, it is

interacting with a program during runtime. Although it can be minimized, dynamic

methods will always have some form of overhead. These additional costs, when

analyzing for execution speed or memory utilization, can typically be waived

as trivial compared to the executing program. Unfortunately for the aspiring

energy aware developer, any other program running in the background (such as a

theoretical dynamic energy analyzer) takes energy itself to run. Hence, an energy

2.4.1 Static vs. Dynamic 32

analyzer running within the program under analysis feeds into its own sample data,

entangling real results with noise.

A simple solution for energy analysis is then to remove the energy reader from

the execution system itself, and instead place a medium (typically a multimeter or

other instrument) in between power source and computer to get a more accurate

reading. In the test data collection phase of this thesis, there are processes that must

be done dynamically. During this phase, a separate hardware reader approach will

be used (as described in Chapter 4). Some computer energy analysis approaches

further expand on the separate sampling hardware approach by attaching multiple

sensors to various parts of the hardware under investigation (as opposed to one

meter sitting between the power supply and computer itself). These approaches

show a further breakdown of energy consumption on a per component basis [28].

Within the context of a static energy analyzer, provided all background software is

minimized, component level granularity of sampling is not necessary for this work

as the goal is overall program energy usage estimates.

Static program analysis refers to methods for understanding a computer program

without running the program. Typically static analysis is considered to be done at

‘compile’ time. Some static analysis methods are statistical observations about the

program, such as comment density, cyclomatic complexity, dependency counts, etc.

Comment density, necessary dependencies, etc. can all be found relatively trivially

by observing the underlying source code to a program. Static analysis can be more

involved, as even though the program being analyzed is not being run, one can

use nearly arbitrary processing and computation in the analysis phase. Since static

analysis does not have access to the additional information about the runtime of

a program, it utilizes alternative assumptions to account for the theoretical issues

with program analysis.

Another form of static analysis technique is that of data flow analysis. Data

2.4.1 Static vs. Dynamic 33

flow analysis attempts to determine run-time information about a program without

running it [60]. This is commonly done through constructing some abstract form

of a program that encodes the possible flows of information with a control flow

graph. Then, control flow paths within the CFG can be explored to find worst-case

execution time (WCET) of a program. Control flow paths are difficult to follow

explore, as CFG models can easily allow for infinite paths from non-determinability

of a static algorithm. In this region lies the area of termination analysis, where a

program is statically observed with the goal of detecting if it ever terminates. It

has been mathematically proven that it is impossible to arbitrarily determine if

a computer program terminates (or ‘halts’) [54]. However, a nontrivial subset of

programs can be statically analyzed for termination with various methods, typically

utilizing the concept of a loop invariant, a way to represent if a loop terminates.

CHAPTER 3
Program Cost Analysis

This section discusses methods for program analysis. An emphasis is put on

automatic complexity analysis, as that is the static approach used by the SEA. A

discussion of the field of recurrence relations in mathematics is introduced, as

well as the concept of cost relations. Explanations about control flow graphs and

approaches for extracting cost relations from an abstract program representation are

provided. After discussion of cost relation extraction, I further explain the process to

find closed forms of cost relation systems and re-applying cost expression contexts

for a final “total energy cost” result.

3.1 Recurrence Relations

For many programs and sequences, it is beneficial to have tools to model them

recursively. In mathematics, a recurrence relation (RR) is simply an equation that

defines a sequence based on a formula that references prior terms in the formula.

The simplest example of a recurrence relation is the Fibonacci Numbers. As a

34

35

recurrence relation, it is defined as:

F(0) = 1,F(1) = 1,F(n) = F(n − 1) + F(n − 2)

This system for representing recurrence relations can encode much more complex

systems. Recurrence relations have an order equivalent to the furthest back term

that the formula references. For example:

R(n) = 3R(n − 1) +
R(n − 2)

2
− R(n − 5)

is a recurrence relation with order 5. Homogeneity of a RR is determined from the

existence of a non-recursive term. For example,

R(n) = 2R(n − 1) − f (n)

Homogenous ⇐⇒ f (n) ≡ 0

Linearity of a RR is an attribute determined by if any recursive terms are being

operated upon non-linearly.

R(n) =
√

R(n − 2)

is nonlinear, as a recursive term, R(n − 2) is being square-rooted. RRs are very

powerful and have a multitude of applications in applied and higher math. Of

importance is that some special forms of recurrence relations can be translated into

36

a closed (discrete) form, removing all recurrence terms. For example,

R(1) = 4,R(n) = 2 ∗ R(n − 1) + 3 Recursive

= 2n+1 + 3(2n+1 + 1) Closed Form

is a linear, homogenous, first-order recurrence relation that has a discrete formula.

How closed-forms of RRs are extracted differ by the order, (non)linearity, and

(non)homogeneity of the RR. Analytical approaches for determining closed forms

are beyond the scope of the paper. Computer algebra systems (CAS) are utilized for

more complex recurrence relations as they can better handle complex logic processes

for finding closed forms of certain types of RRs. Not all recurrence relations have

simple closed forms, such as one closed form representation for Fibonacci numbers.

F(0) = F(1) = 1,F(n) = F(n − 1) + F(n − 2) Recursive

=
1
√

5

(
1 +
√

5
2

)n

−
1
√

5

(
1 −
√

5
2

)n

Closed Form

For the purpose of this project, I presume that some recurrence relations are not

able to be translated to a closed form.

3.2 Cost Relations

The execution cost of computer programs can also be modeled using “recurrence

relations”. For a simple program that imperatively executes various assembly

instructions, no recurrence is necessary, we can instead model the execution cost as a

direct sum of all the instructions in addition to various constant energy consumption

37

values (discussed in chapters 2 and 4). Nearly all programs are not as simple, instead

with various control flow constructs such as loops, function calls, etc. Recurrence

relations can model these constructs, especially if their definition is expanded

slightly to a related concept of cost relations (CR). These cost relations are used to

compute a cost as a primary goal. Recurrence relations serve as a way of expressing

a reliance on prior information.

As an example, the cost relations for a simple function foo(), which can be seen

in code and control-flow graph from in Figures 3.1, 3.2, are as follows:

(a) C f oo(v) = k1 + C f or(vec, 0) {v ≥ 0}

(b) C f or(v, i) = k2 {i ≥ v, v ≥ 0}

(c) C f or(v, i) = k3 + Cbar() + C f or(v, i + 1) {i < v, v ≥ 0}

(d) C f or(v, i) = k4 + Cbaz() + C f or(v, i + 1) {i < v, v ≥ 0}

where i, v are the counter variable and vector length, respectively. Then C f oo(...),Cbar(),Cbaz()

represent the costs of executing their respective methods. k1..4 are constant costs that

are a part of each equation. The C f oo(...) block is split into a ‘for’ loop C f or, and the

declaration and initialization of the counter variable i. In the above cost equation, k1

accounts for the cost of creating i. Equations (c) and (d) account for the costs of the

branches created by the if statement contained within the loop. Since this is a static

model, it is impossible to know the actual element values of vec, so the conditions

for (c) and (d) are the same, even if only one will execute per iterations [4]. A static

analysis for the worst case execution time of foo is thus:

C f oo(v) = k1 + v(k2 +max
(
k3 + Cbar(), k4 + Cbaz()

)

38

Figure 3.1: Simple Foo() Method in C++ Figure 3.2: ARM ASM from Figure 2.3

Which one sees is a closed form of the input cost relation system, with all recurrences

removed. If Cbar() and Cbaz() had additional nesting and logic within them, the

process of conversion to a closed form will propagate throughout all parts of the

program representation until a fully closed form is reached, or it is determined a

closed form for the cost relation system is impossible with current methods. This is

only a simplified version of CR analysis, where program scope is trivial enough to

extract CRs manually as well as find a closed form intuitively. Formal approaches

are discussed further in this chapter.

As seen in the example above, CRs have syntactic similarities with recurrence

relations. Cost Relations are systems of equations that may reference themselves,

like recurrence relations. CRs have bounds that can define different behaviour. RRs

similarly have bounds, with simple RRs generally being bounded by n > 1, as the

few terms in the recurrence relation are defined statically, such as R(1) = c. While

CRs can be represented with syntax congruent to RRs, they can differ enough that

most RR methods are not applicable to CR solving.

• Non-determinism of cost relations. Systems of cost relations can reference

themselves in ways that recurrence relations do not. CRS can represent

non-halting problems. If the underlying programming language that is being

39

represented by CRs is deterministic, the levels of abstraction that are required

to represent a program statically can introduce non-determinism. Since

arguments can only be observed by their sizes instead of underlying values,

this size abstraction can cause a cost relation system to not terminate [4].

• Imprecise constraints due to the possibility of needing to encode non-trivial

data structures as parameters. In the simple example, a vector is a linear

structure that can be sized simply by the number of elements within it. For

example, if instead of a vector, consider a CR system that is being built to

model a program traversing a graph or tree. It is difficult to predict the number

of elements in each structure, and thus also difficult to predict the amount of

elements to reduce by at each step. In the vector example, each step reduces

by one element. Given an unbalanced binary tree, representing the reduction

in search space at each step by a cost relation precisely is impossible [4]. This

issue pushes many CR analysis systems to constrain themselves to Worst-Case

analysis, as then more information can be inferred about worst-case size

reduction at each step. For example, a cost-relation modeling searching for

an element within a binary search tree. Statically, one cannot predict how

the actual tree is balanced or where the search query is when the program is

running. Due to the fundamental structure of a binary search tree, one can

always know that at worst, stepping towards one node removes at worst one

element from the search.

• Multiple Arguments of cost relations. CRs very commonly depend on several

arguments that can move in multiple different directions. This means that the

number of times a relation recurs is a combination of multiple of its arguments

[4]. For a simple recursive representation of a loop, that recursive equation is

iterated n times, where n is the size of the loop. For automatically constructed

40

cost relations for a program, the underlying code will likely be more complex

than a simple loop, instead having flow dictated by multiple variables. A

combination of all of these variables is then able to be used to infer how many

times a cost equation is ‘called’ in a static analysis of the program. In terms of

recurrence relations, this means that many cost relations are not primitively

recursive. Primitive recursion means that a recurrence relation has a direct

translation to an iterative construction. A recurrence relation that is also not

primitively recursive is the famous Ackermann Function [2].

Hence, the methods of solving RRs differ from the methods of solving CRs. Some

dimensions of further complexity in RRs exist that cannot occur within CRs, such

as polynomial coefficients to recursive calls. More complex recurrence relations

and closed form discovery methods are not a focus of this work, aside from their

relevance and applications to cost relations.

An influential framework presented in the 1970s by Wegbreit for automatic cost

analysis splits the analysis task into two parts [58]. First, a computer program,

along with an associated cost model, is statically analyzed to create a system

of cost equations (a cost relation) [58]. Sometimes systems of cost relations are

wholly referred to in the singluar, in the context of “A program and its associated

CR”. A CR is not useful for automatic analysis, since the possibility of recursion

within the system makes analysis quite difficult. Second, the CR must be converted

to a closed form representation. As this conversion is happening statically, the

assumptions that are used generally result in the static, closed form of a CR to

be an approximation. The worst-case bound is the most common approximation,

as pessimistic estimations are preferrable to naïveté [58, 4]. However, different

assumptions in the closed form construction step will lead to different estimations.

Cost relations need a fundamental basic cost expression to construct more

41

overall cost equations that accumulate an overall cost. The actual values and

meanings of these basic cost expressions can change, which change the resulting

CR. Some common “costs” that are chosen for programming include the number of

numerical comparisons [58, 53], heap allocations [4, 5], or bytecode instructions [4].

Formally, a basic cost expression is produced according to the following grammar

[4]:

exp := r | nat(l) | exp + exp | exp ∗ exp | expr
|

logn(exp) | nexp | max(S) | exp − r

Where r ∈ R+, l is a linear expression, S is a non-empty set of basic cost expressions,

nat is a function defined fromZ toZ+ by nat(v)=max(v, 0). Note that this definition

means that a basic cost expression must be positive, both by the definition above

and by intuition. Since the goal of this analysis is to produce a predicted cost, the

existence of actions that come at a negative cost is impractical. In the most minimal

case, an action will have a cost of 0, but not negative. Allowing for negative cost

expressions is nontrivial as it invalidates many presumptions that further analysis

is constructed upon.

Basic cost expressions are an abstract representation of the costs accumulated

throughout the system in question. For an energy aware programmer, the actual cost

that is being accumulated is energy. Connecting electrical consumption to program

execution are machine instructions. Since assembly is more human readable version

of machine code, assembly instructions are the basic cost expressions of the SEA

implemented as a part of this project. After worst-case upper-bounds analysis, a

closed form expression in terms of assembly instructions is produced, if possible.

This expression is complete as is or can be condensed into a single energy estimation

3.2.1 Cost Relation Extraction 42

cost through mapping assembly instructions to energy values through dynamic

benchmarking. For the static energy analyzer presented here, the basic cost is an

assembly instruction. However, the amount of energy consumed by a computer

while it runs a program can not be attributed absoluted to just the assembly

instructions of the program being executed. Some additional considerations to the

overall energy cost are necessary, such as processor level complications (branch

prediction, caching, out-of-order execution) discussed in Chapter 2 and system level

considerations (operating system, background energy consumptions, etc) discussed

in Chapter 4.

In the CR example illustrated by Figures 3.2 and 3.1, the associated CR was given.

For simple programs, cost relational systems can be inferred, but the automatic

construction of the CR is (unsurprisingly) involved.

3.2.1 Cost Relation Extraction

Extracting cost relations from existing code has been demonstrated for various

programming languages of different paradigms, such as functional, logical, and

imperative. Cost relation systems are arguably easier to extract for higher level

programming languages, due to the layers of abstraction that they encode allowing

for an easier understanding of program control flow. However, the cost relation

system of a higher level language is less useful for static cost analysis as the funda-

mental “cost” is messy. The same abstractions that make finding a representative

CRS also mean that the most basic cost blocks are highly abstracted. These high

level basic cost blocks are difficult to test for a specific cost individually. Therefore,

the goal is instead to extract cost relations of a lower level language representation

of a program that is close enough to machine execution to allow for individual

testing of the pieces of the program, but still with enough information to allow for

cost relations to be extracted in the first place [3].

3.2.1 Cost Relation Extraction 43

While assembly does not follow any particular programming paradigm, it is

most closely modeled by an imperative paradigm. The steps required to extract the

cost relations of an imperative program are to translate the code into a control flow

graph (CFG), perform intermediate flatting upon the CFG to find an intermediate

recursive representation, infer size relations based on initial input calls, statically

analyze approximations of rules from the intermediate recursive representation,

and finally combine the prior steps to form a complete cost relation [3].

A control flow graph is a powerful intermediate data structure used in some

compilers as a representation of program execution. The following theoretical

approach utilizes one possible formal definition of a CFG that tracks information in

a way that is helpful for cost relation construction. Alternative styles of CFGs exist,

although their general concept is the same. To generate a CFG from corresponding

imperative source code, one first identifies all the possible blocks within the source

code. Each block is a node in the CFG, where a block is a 4-tuple of the following.

⟨id,G,B,D⟩

• id a unique label or identifier to a block

• G is the “guard” of a block that contains conditions that must be satisfied for

the block to be executed

• B is a sequence of imperative instructions that are presumed to all be executed

if the block executes

• D is a list containing all possible successors to the current block. Multiple

successors may exist in the case of conditional control flow such as loops,

function calls, recursion, or jumps.

3.2.1 Cost Relation Extraction 44

In this case, B and id are comparatively trivial objects to construct, but determining

guards G and successors D is more involved. In the context of assembly, a large

portion of mnemonics have exactly one successor (which means they can be

combined into one overall block). For this project, the main structure that could

introduce multiple entries to a block’s successor list D are that of branching. In

assembly, various mnemonics allow for arbitrary jumping to other portions of the

source code execution. These jumps in ARM assembly can be unconditional, such

as the mnemonics b (branch) or bl (branch and link). Alternatively, a whole family

of conditional branching mnemonics exist as well, such as the family of b.⟨condition⟩,

where ⟨condition⟩ could be anything such as EQ(=),NE(,),GE(>=),LE(<=),GT(>

),LT(<), etc. For a better reference on ARM mnemonics, refer to Appendix A. These

conditions then could then contribute to the next block’s guard clause. Further

constructs for control flow exist within assembly, but they are beyond the scope of

this work.

The next step in automatic cost-relation system construction is removing all

iteration from the program and replacing it with recursive links in the CFG.

Additionally, we need to flatten the operand stack such that all its contents are

represented through local variables to each block. In each block we condense the

possible stack variables into parameters of the current block to limit chances of

exceeding stack size limits [3]. There are further optimizations and theory into

how the process of this translation, but the general goal is to remove all global

information in this imperative environment and have all information needed by a

block passed to it by the prior in the CFG. This allows the control flow graph to be

represented as a system of recursive equations.

After various reductions to the control flow graph, the next step is to infer

size-relations at different points of the computation. When limited to static analysis,

one is unable to know the underlying value of variables. However, it is possible

3.2.1 Cost Relation Extraction 45

to understand sizes of variables. In higher level languages, this could be things

such as the length of a collection, numerical constraints, term-depth, etc. In the

context of ARM with the limited scope of this project, the primary size-relation

under consideration is that of constraints on numerical variables. For example, a

loop with a condition to loop until as certain value is too small allows for a size

relation to be created for the looping variable. Before inferring size relations, we

need to convert the recursive representation to contain calls-to size-relations between

variables in the head and variables used in subsequent calls.

Definition 3.2.1 (calls-to size relations). Let Rm be the recursive representation of a

method m, where each rule takes the form p(x̄)← G, B̄k, (q1(ȳ; ...; qn(ȳ)). The calls-to

size-relations of Rm are triples of the form

⟨p(x̄), p′(z̄), φ⟩where p′(z̄) ∈ calls(B̄k) ∪ {p_cont(ȳ)}

which describes the size-relation between x̄ and z̄ when p′(z̄) is called, where

p_cont(ȳ) refers to the program point immediately after B̄k. The size-relation φ is

given as a construction of linear constraints a0 + a1v1 + a2 + ... + anvn op 0, where op

∈ {=,≤, <}, and each ai is a constant, and vk ∈ x̄ ∪ z̄ for each k [3].

With this definition, the process of inferring size-relations is done through first

reducing blocks into the linear constraints they impose upon variables, and then

using a bottom-up approach from a fixpoint algorithm. Block reduction to linear

constraints is done by abstracting guards and underlying operations into their effect

on variables [3]. Fixpoint algorithms are beyond the scope of this work, but the

main idea is that we utilize a fixed point in the recursive representation as an anchor

and iterate upon that point until a target condition is satisfied.

Finally, to get a cost relation system (CRS) for the imperative source program.

3.2.1 Cost Relation Extraction 46

The main idea is to combine information from the recursive representation of a

control flow graph and additional information yielded from typical static analysis

methods to get an optimal cost relation system for a program. The primary goal

of this additional step is to detect what arguments in the recursive representation

system are unnecessary for the cost relations. Given a block Blockid in a control flow

graph, represented by one recursive rule with no distinction between local and

stack/global variables, the cost function for Blockid is of the form Cid : (Z)n
→ N∞.

The minimization of the count n arguments is done using a few rules. Sometimes,

arguments in recursive representations can be dropped because they do not affect

overall program control flow. For example, consider a passed variable that is just an

accumulating parameter of some kind. More generally, the process of determining

an approximation of variables is a common static analysis problem that involves

tracing data dependencies against control flow and a fixpoint process. There are

more complex and precise reduction processes are available, but since the primary

goal here is removal of redundant variables (as opposed to redundant operations),

more simple approaches suffice. As each recursive equation representation is

equivalent to a block in the control flow graph, one can observe the unconditional

instructions B in that block and all variables it interacts with in the process of

finishing the block, and drop the unused variables. To get the desired cost relation

(which is a system of cost equations) for a given Blockid, the main process is to create

one cost equation that defines the total cost of sequential statements B in the block

and the cost to the next block (call it p_cont for continuation), and another cost

equation which sets the cost of p_cont as the cost of any other block with a satisfied

guard. The continuation is a separate equation because it allows for more flexibility

in possible alternative paths [3]. A rigorous mathematical representation of these

cost relations exist, but is omitted as the extreme specifics are not of focus here. After

all this, there will be a (likely sizeable) set of cost equations for the overall program

3.2.2 Automatic Upper Bound Inference 47

execution. These cost relations can then either be solved for dynamically (with

inaccuracies due to measurement) or statically (with losses due to approximation)

to allow for a final cost to be determined. It is worth noting that this framework

of cost is flexible, as a ‘cost’ is any positively accumulating value that is trackable.

In the case of this project, the goal is tracking energy consumption per instruction,

where groups of instructions have different energy costs. Alternative cost systems

exist, such as having every instruction cost ‘1’ unit to estimate overall computation

time, or tracking only memory allocations to estimate memory usage cost.

3.2.2 Automatic Upper Bound Inference

This is a highly mathematical summary of the methods being used by the PUBS solver [4]. Proceed

with caution.

To perform significant transformation upon CRs, a more rigorous definition is

first required. A Cost Relation System S is defined as a finite set of all equations of

the form:

⟨C(x̄) = exp +
k∑

i=1

Di(ȳi), ϕ⟩ k ≥ 0

Where C and Di are cost relation symbols, x̄ ∪ ȳi are distinct variables, and ϕ is

a set of linear constraints over x̄ ∪ vars(exp)
⋃k

i=1 ȳi [4]. Informally, this is a terse

way of expressing all possible equations that construct a full cost relation system.

For any specific equation ϵ from the cost relation system S, to determine an exact

cost of the program, begins with the value of the base cost expression exp and

then accumulates the cost of each step in the summation, where cost relations are

explained by Di, variables by ȳi, and associated linear constrains described by ϕ.

At each iteration of the summation, there may be alternative choices that change

the future cost relations Di+1,Di+2, ...,Dk. This means that branches can appear in the

3.2.2 Automatic Upper Bound Inference 48

summation during recursive evaluation. Thus, ϵ can be represented by an associated

evaluation tree. An evaluation tree is a data structure that encodes how a high level

expression is interpreted by branching at each operation. The associated evaluation

tree for a specific ϵ thus represents all the ways in which the program could execute.

By summing over all the nodes to the evaluation tree, a final cost of ϵ is collected[4].

The formal definition for the set of trees for an entire cost relation system is complex

and detracts from the comprehensibility of this work. Given the set of all trees for a

cost relation system defined by Trees(C(v̄),S, the solutions to a Cost Relation System

are provided by:

Answers(C(v̄),S) = {Sum(T) | T ∈ Trees(C(v̄),S}

Where each tree represents one possible evaluation of an initial ϵ.

To get the worst-case cost of program, consider a MaxCost(v̄) := max(Answers(C(v̄),S).

Unfortunately, MaxCost() is flawed. Turing proved that it is impossible for one

computing machine to determine if another computing machine is “circle free” in a

finite number of steps [54]. This finding is renowned as the Halting Problem, which

shows it is impossible to determine if an arbitrary program terminates statically.

For the evaluation tree set Answers, the trees could be infinitely deep, infinite in

quantity, both, or neither. Thus, MaxCost() is flawed because Answers could likely

be an infinite set. Additionally, many more computer programs are terminal but

highly combinatorial. Hence, some evaluation tree sets may be finite, but still

not computable in any legitimate timespan. The existence of these mathematical

and computational limits does not mean this approach is worthless. Sometimes,

infinitely many trees can be reduced to a finite upper bound solution. While infinitely

3.2.2 Automatic Upper Bound Inference 49

many evaluation trees exist, they are not always distinct, some infinitely numbered

trees have a finite set Answers. The overall goal is not to iterate through an evaluation

tree that follows one possible execution of a cost relation, but to find a closed form.

An immediate challenge to a constraint based closed-form translation of Answers()

is that many cost relation systems produce infinite trees due to imprecise constraints,

ϕ. For example, in equation 3.2 of the cost relation example at the beginning of this

section, i is constrained as i ≥ v, where v is the size of an input vector. Although

theoretically infinite choices for values of i exist in the evaluation tree expansion,

the result is always only k2, a constant representation a basic cost expression.

Recurrence relations are generally single functions, that may have alternative

logic based on values of the recurrence. Cost relation systems (CRS) allow for more

interaction since they tend to be systems instead of individual functions. CRS are

composable, meaning a single cost equation may be made up of not only itself, but

other cost equations as well. This allows for the solving of upper bounds to be done

by focusing on individual equations. If one equation has a reference to another CR,

temporarily shift focus to that CR. Importantly, this compositionality only works

well if recursions are direct. If cycles of recursion exist, compositionality breaks

down.

D(x) = 10 + C(x − 1) {x ≥ 0}

C(x) = 11 +D(x + 1) {x ≥ 0}

For example, when trying to decompose the CRS above with an entrypoint of D(x),

one quickly observes that it is impossible to continually break down the system.

3.2.2 Automatic Upper Bound Inference 50

The decomposition would as such.

D(x) = 10 + C(x − 1)

D(x) = 10 + [11 +D((x − 1) + 1)]

D(x) = 21 +D(x)

D(x) = 21 + [10 + c(x − 1)]

and so on...

While this is a technical constraint to this upper bound solving approach, it is also an

unlikely issue in practice since the CRS systems modeling programs of interest are

less likely to be so trivially infinite. For non-cyclic cost relation systems, eventually

through repeated substitution one can reach a non-recursive (or stand alone) cost

relation which is constructed entirely of basic cost expressions.

This approach of substituting sequential cost relations for a prior reference can

also be thought of as trees, which is the evaluation tree approach discussed prior.

Evaluation tree approximation is a common static analysis approach, where an

evaluation tree is evaluated by their size, depth, and node count [4]. There are two

types of nodes within an evaluation tree constructed from a CRS: internal nodes with

recurrant references and leaves of stand alone cost relations. A common approach is

to then count the number of leaves and number of nodes separately and multiply

each by an upper bound cost for the base and recursive step. This approach is still

nontrivial, as one still must perform internal and leaf node counting, as well as

inferring a tight upper bound multiplier for both.

3.2.2 Automatic Upper Bound Inference 51

3.2.2.1 Upper Bound Node Counting

For the evaluation tree approximation method, one needs upper bound counts for

both internal+(x̄) (internal nodes) and lea f+(x̄). The approach presented in [4] finds

the bounds on the branching factor b and height h+(x̄) of all trees related to x. Then

one can compare the height and branching factor of the unknown tree to an existing,

complete tree with the same height and branching factor to obtain an upper bound.

Trivially, an incomplete tree is upper bounded by a complete tree of the same height

and branching factor. To infer the upper bound of height, h+, one starts with any

evaluation tree T ∈ Trees(C(v,̄S). Consecutive nodes in any branch of T represent

consecutive recursive calls that would occur in the evaluation of C(v̄). From this,

the bounding tree height can be reduced to bounding consecutive recursive calls

during the evaluation of C(v̄). To model consecutive calls, the concept of loops is

useful even within cost relation systems.

ε = ⟨C(x̄) = exp +
k∑

i=1

C(ȳi), φ⟩

So, the loops on a certain cost relation C, is found as Loops(C) =
⋃
ε∈de f (S,C) Loops(ε)

[4]. Automatic termination analysis typically find an upper bound on the number

of iterations of a loop exists by finding a function f within the loop’s arguments

to a well founded partial order, such that f decreases in any two consecutive calls.

If a partial ordering can be found to show “progress” towards end bounds of a

loop, then infinite loops are impossible (and thus, termination will occur). These

3.2.2 Automatic Upper Bound Inference 52

functions are called ranking functions [4]. Automatic termination analysis typically

only aims to prove the existence of a ranking function, as the mere existence is

enough to show that the process in question terminates. For upper bound solving,

we need to discover a precise ranking function f .

f : Zn =⇒ Z+

⟨C(x̄) =⇒ C(ȳ, ε)⟩ if ε := f (x̄) > f (ȳ).

The above is a formal definition for a ranking function. Of note is that ε captures

information in which the value of variables change iteration to iteration, and ε

captures information about guards of the loop such that it can detect when to

terminate [4]. A ranking function can be said to be a function for a cost relation C

if it can be used to rank all loops in Loops(C). A cost relation ranking function is

thus usable to find evaluation tree height because the ranking function decreases

incrementally and is non-negative. The most common ranking functions are linear,

which are the main types used within the PUBS solver [4]. Some loops may have

further, tighter bounds, such as non-linear loops. If every difference in consecutive

calls of a ranking function is guaranteed to be some constant σ > 1, then ⌈ fc(x̄)
σ ⌉.

Other cases exist, such as when a loop ranking function decreases exponentially

between steps, which is handled by a logarithmic ranking function. The logic

behind such bound reductions is not the focus of this work, but worth mentioning

as nonlinear loops occur within programs someone commonly. This shows that

for an evaluation tree, its height h+, branching factor b can be observed, as well as

using ranking functions to derive upper bounds for loops represented within the

evaluation tree.

3.2.2 Automatic Upper Bound Inference 53

3.2.2.2 Upper Bounding Individual Node Cost

Recall the overall method for an upper bound cost on an evaluation tree is to

combine the cost per node with a bound on the number of nodes to reach an end

bounded cost prediction for the execution of a given evaluation tree. The prior

section discusses automatic inference upon the number of nodes of an evaluation

tree, while this section discusses inference upon the cost per node. A tree can have

internal nodes and leaves (external nodes), which must be handled differently. This

section discusses, in brief, derivation of costr+(x̄), a function to calculate the cost of

any internal node x̄, as well as costnr+(x̄), which calculates the cost of an external

node. The reason behind the separation between costr+(), costnr+() is that external

nodes have less reliance on unknown variables since they are composed of basic

cost expressions [4]. Within each individual node, we can split the cost expressions

into two solvable subproblems, invariants and upper bounds of cost expressions.

At the static analysis level, it may be impossible or unfeasible to track individual

variable information. However, these values can be approximated from a superset

of possible values using existing static analysis methods. To compute an invariant

from a linear constrain perspective, we utilize Loops(C). A linear constraint psi holds

for the first call of a cost relation, C(x̄0), and the arguments of any latter recursive

call instance, C(x̄) then there is a loop path that can be applied to reach one step

further than the path needed to reach C(x̄), call it C(ȳ). The math behind deriving

loop invariants is beyond the scope of this work. The general approach is a proof

through induction, to show that at any level of a possible loop, the next level can be

reached with the same invariants. Loop invariants could be problematic since they

are defined over all evaluation trees. The set of all evaluation trees for a cost relation

system is very large or infinite, so this is incomputable in general. The approach

used to compute invariants trades exactness for an answer, giving approximate

3.2.2 Automatic Upper Bound Inference 54

invariants through utilizing a convex-hull operation and a guarantees termination

operation [4].

Finally, we need to determine the upper bounds on cost expressions themselves.

Each node in an evaluation tree is composed of different instances of cost expressions.

More generally, one can infer the upper bounds on the cost expressions in the initial

cost relation system, and then apply those bounds to compute upper bounds for

every internal and external node in the evaluation tree. This upper bounding

technique is done using automatic linear constraint tools that follow a two step

process of computing ϕ for a new variable y, and then syntactically searching in ϕ

for an expression that can be rewritten to a reduced version of y. There are multiple

further steps of optimization and reductions to tighten the upper bound as presented

in [4], however the specifics are beyond the scope of this thesis. Combining prior

explanations and after applying various optimizations, the cost of any initial call

C(v̄) of a cost equation is given by the following definition:

Definition 3.2.2. Let S = S1
⋃

S2 be a cost relation where S1 and S2 are the sets of

non-recursive and recursive equations for C. Let

• ⟨C(x̄0) =⇒ C(x̄), ψ⟩ be a safe approximation of the loop invariant Ic.

• Ei = ubexp(exp, x̄0, φ, ψ) | ⟨C(x̄) = exp +
∑k

j=1 C(ȳ j, φ) ∈ Si, 1 ≤ i ≤ 2

• costnr+(x̄0) = max(E1) and costr+(x̄0) = max(E2)

Then, for any call C(v̄) and for all T ∈ Trees(C(v̄, S) it holds that

• ∀node(_, r, _) ∈ internal(T). costr+(v̄) ≥ r

• ∀node(_, r, _) ∈ lea f (T). costnr+(v̄) ≥ r

This allows for actual hard upper bounds to be substituted into non-recursive

cost relations. Following this process allows for a static evaluation tree upper bound

3.2.2 Automatic Upper Bound Inference 55

approximation to be completed. Further improvements to this technique exist,

however they will only be mentioned in brief here. The node-count upper bound

approach discussed does not tightly bound divide and conquer programs. This is

because the branching factor of divide and conquer programs is much larger than

one, which is a partial presumption in the prior approach. To achieve a tighter

bound, automatic upper bound solvers utilize a level-count upper bound approach.

Additionally, the presented approach requires direct recursions, however it is entirely

possible that a cost relation system contains indirect recursions (cycles involving

more than one function). It is possible, however, to automatically transform a

CRS into its direct recursive form by replacing all intermediate relations with final

definitions through an unfolding process. Unfolding involves replacing a recursive

call with its definition in a target relation. This process may be non-terminating,

such as in the simple direct cyclical cost relation system presented prior. Cost

Relation Systems can be further sorted by something known as their Binding Time

Classification which encodes if their unfolding terminates. The high level process

involves finding residual relations within a cost relation systems which must remain

in the system, and working to eliminate the remaining unfoldable relations [4].

The algorithm behind this transformation involves an involved partial evaluation

process that will not be summarized here.

3.2.2.3 Automic Upper Bound Issues

There are weaknesses to this automatic upper bounding for a cost relation system.

Directly recursive cost relations do not have a cover point, meaning they are

essentially infinite/non-terminating loops, are unable to have an upper cost bound

derived. Finding ranking functions for loops within evaluation trees is difficult and

uses a linear ranking approach. This inference method does not cover all possible

3.2.2 Automatic Upper Bound Inference 56

ranking functions, but is “good enough” for realistic use. Methods exist to infer

more complex ranking functions, however they were not implemented in the tool

this SEA utilizes. Finding invariants is difficult, and the linear constraint approach

is fallible. For example

⟨C(n,m) = m, {n = 0}⟩

⟨C(n,m) = C(n′,m′), {n′ = n − 1,m′ = 2 ×m,n > 0}⟩

which means the base case of m = 2n
× m0. Different methods exist for inferring

more complex invariants, however they were also not implemented in the tool used

within this static energy analyzer.

In this section, I summarize the main ideas behind cost relations and the process

behind determining upper bounds for a system of cost relations. The CRS is broken

into a (possibly infinite) set of evaluation trees, where we perform an upper bound

approximation on an evaluation tree by combining the incremental recursive cost

and the per-node cost. The incremental recursive cost is determined through

the tree’s branching factor and height, bounded by a complete tree. Loops are

expressed within the evaluation tree and performing some complex mathematics,

allow for tighter bounding. The individual node cost is extracted through detecting

invariants and upper bounding individual cost relations. Some cost relations

may have complex recursion, which can sometimes be simplified using a partial

evaluation unfolding algorithm [4].

57

3.3 Practical Upper Bound Solver (PUBS)

The approach of automatically solving for upper bounds is, as surveyed in the

prior section, non-trivial. The research team that presented the above approach

also released a free tool to practically solve cost relation systems. It is called the

Practical Upper Bounds Solver (PUBS), which is primarily accessible though a

web entrypoint1 PUBS is a Prolog based program rolled with the Parma Polyhedra

Library for linear constraint handling. It reads a cost relation as input and outputs

various upper bound, closed forms of the equations as output. Due to practical

limitations, the only local version of PUBS accessible for this thesis is an x86

executable, which is not ideal as the programs of interest that are being analyzed are

ARM assembly files. Since this is a static process, this is not an issue, as the ARM

program can be given to PUBS running on a laptop of the appropriate architecture

for the analysis, and then have the ARM still run on the original ARM system.

3.3.1 Prolog Overview

Prolog is a Logic based programming language, a programming paradigm somewhat

removed from more commonly used paradigms of imperative, functional, or object-

oriented. Programming languages are categorized in many different ways. In

Chapter 2, I discussed differences in semantics and individual languages’ types

systems. Programming languages can also be separated by paradigm, an abstract,

core idea of any programming language. A language’s paradigm will change how

a programmer expresses the program they want to write. Imperative languages

require the programmer to instruct the computer how to do what they want it

1http://costa.ls.fi.upm.es/pubs [4]. PUBS was presented as a part of a research paper that is 13
years old as of 2024, which makes the web interface an undesirable endpoint for the SEA. Luckily, the
research team, when contacted, shared a local executable version of PUBS for x86 based machines.
This does limit the existing implementation of the SEA such that it analyzes an ARM assembly while
on x86 architecture, however this is not problematic since the analysis is static.

3.3.1 Prolog Overview 58

Figure 3.3: Common Programming Paradigms [31]

to do. Object oriented programming within the imperative category, but adds

some additional ideas about containing data and actions to interact with said data

together in objects. From the existence of objects comes the allowance for the tenets

of OOP: encapsulation, abstraction, polymorphism, and inheritance. Even with all

the additional abstractions objects allow within a system, one is still instructing the

computer imperatively within OOP. An alternative umbrella style is declarative

programming, which instead focuses on expressing a desired result and allowing

an existing system to "figure it out". Within the declarative paradigm lies Prolog, a

logic programming language.

When developing a Prolog system, the methods of “programming” are different

from the typical imperative-esque approach. A Prolog developer must understand

the formal relationships between objects within a problem, and which relationships

should be considered “true” [14]. For a complicated mathematical system, such

as the one specified in the prior section for automatic upper bound inference, this

makes Prolog an ideal medium to express the constrains and successful relationships.

If we constrain the program to declarations about the existing system, we allow for

the computer to infer new facts from existing ones and perform various hidden

optimizations [14].

3.3.1 Prolog Overview 59

Figure 3.4: Programming Languages Colored By Paradigm over Time [39]

The basics of Prolog programming involves interacting with facts, rules, and

questions. Within Prolog, everything is considered an “object”, but a disjoint idea

from an object oriented notion of an object. This is a weakness of English as a

communication medium, but not the point of this thesis. As seen in 3.4, Prolog

emerged separately to object oriented languages, and as such the two ideas of

objects are separate, just unfortunately sharing the same name. Objects interact

through relationships, the other conceptual block with which Prolog logic systems are

constructed. The actual modeling of a system in Prolog is done through specifying

3.3.1 Prolog Overview 60

facts and rules about objects and then asking questions about those objects and

relationships. Prolog dynamically constructs containers for facts and rules about

objects and their relationships as it interacts with the developer.

Facts are ways of defining one instance of a relationship between objects.

Standard Prolog syntax is as follows:

relationship(object1, object2, ...).

where the relationship comes first, followed by all objects that the fact dictates are

part of the relationship are surrounded by braces and in a comma separated list.

Variable names, as relationship, object1, object2 and so on are variables, must

all begin with lowercase letters. To Prolog, the order in which the objects are listed

has no inherent meaning, but it will attempt to follow the order provided, so it is

important to be consistent. Questions asked to a Prolog system are done in a similar

form of facts. Instead of of defining objects, relationships, and a binding between

them to be stored in a logical database, one instead queries the existing database

to see if a statement is true or false [14]. It can become tedious asking true/false

questions to a Prolog system, as every fact in question has to be fully written out.

To account for this, one can use variables and allow for Prolog to solve for what a

variable could possibly be. Capital letters are commonly used as ‘always variables’,

meaning unknowns that the system will attempt to solve for. Beyond this, one can

also define conjunctions between facts, such as and, or, etc. The final fundamental

piece of Prolog is the ability to write rules, which are constructed in if-then like

structure

if_relation(a, b) :- result(a, b).

This is a very brief overview of Prolog and its declarative, logical paradigm [14].

The fundamentals of Prolog are very basic, which allows for unique logic systems

3.3.2 PUBS Interface 61

to be constructed on top of it. In our case, PUBS uses standard Prolog and a critical

dependency of the Parma Polyhedra Library [10].

The Parma Polyhedra Library exposes numerical abstractions that are useful

in many highly mathematical contexts, however it is aimed at abstracting various

difficult steps within complex system analysis and verification. Static analysis for

an automatic upper bound, the use of PUBS, falls within a subset of complex system

verification. Of specific interest to the PUBS system is the ability to perform various

steps required for automatic synthesis of linear ranking functions and parametric

integer programming [10].

3.3.2 PUBS Interface

Figure 3.5: ArrayReverse() Java Method Code
[4]

Figure 3.6: Cost-Equation System in PUBS syntax
of Figure 3.5

One example of a simple method to infer a static upper bound for can be seen in

Figure 3.5, which is Java code for a method that simply reverses an array. For now, I

hand wave the various transforms and assumptions used to transform the code to a

cost-relations system, but one can see in Figure 3.6 a cost-relation system for the

associated java ArrayReverse() code.

The various permissible syntax for the PUBS solver can be seen in Table 3.1.

3.3.2 PUBS Interface 62

PUBS Object Definition

Equation := eq(Head, CostExpr, ListOfCalls, ListofSizeRel)

Head := Name | Name(Arguments)

Arguments := Variable | Variable,Arguments

ListOfCalls := [] | [Head | ListOfCalls]

ListOfSizeRel := [] | [SizeRelation | ListOfSizeRelations]

SizeRelation := Variable Oper LinearExpr

LinearExpr := RatNum * Variable | RatNum * Variable + LinearExpr

Oper := >=|<=|=

CostExpr := As seen in section 3.2

ListOfCostExpr := [] | [CostExpr | ListOfCostExpr]

RatNum := Rational Number

Table 3.1: PUBS/Prolog Syntax

$ > . / p u b s _ s t a t i c {name of PUBS executab le }

− f i l e <INFILE> { path to . ces f i l e }

−entry <ENTRYPOINT> { overr ide d e f a u l t entrypoint }

−show_asym <yes | no> { show asymptotic bounds }

−output xml { output as XML ins tead of p l a i n t e x t }

−computebound <OPTIONS BELOW>{how UB i s found }

ubnormal { d e f a u l t node−count approach }

ubnormal_withlevelcountenabled { l e v e l count }

Figure 3.7: PUBS Executable Usage

Running the PUBS solver on the ArrayReverse() cost-relation system produces

a large amount of text output, which an abbreviated version of can be seen within

Figure 3.8. The output from PUBS, even without additional logging and output

3.3.2 PUBS Interface 63

Figure 3.8: PUBS ArrayReverse() Partial Output

flags enabled, is nontrivial. The goal of this example use of PUBS was to compute

an upper bound for the array reverse function, which the solver found to be

12 + 14 ∗ nat(A), where A is the size of the array passed into the method. If the

set of cost-equations were instead built with the fundamental cost of assembly

instructions, this PUBS result would give the desired output for an equation that

would estimate the amount of energy required to run the code given an array of

a specific size. Thus we see the basics of interacting with PUBS, the specificity in

which the cost-equation systems must be writting and the basics of Prolog, the

system of which PUBS was built within.

64

3.4 Partial Dynamic Cost Analysis

The goal of automatic upper bound cost inference is to remove the self references

within a static system and reach an end, non-recursive “cost” of a program. An

alternative, older approach is that of allowing for dynamic execution profiling [53].

Following the above example of inferring the cost of an array reversal program

presented in Figure 3.5, instead of translating the code into a system of cost relations,

one must identify the fundamental blocks within assembly. These blocks are

sequences of instructions that do not follow any conditional logic. In this instance,

the assembly within the for loop is a basic block, the instructions required prior to

the loop are a block, and the instructions after the loop are a block. Then, one runs

the program in question, keeping track of how many times each block executes.

With this additional information gleaned at runtime, the end cost of execution can

be found through multiplying the total cost of each observed block by the number

of times it executed.

This approach is simpler than the process used in static automatic upper bound

cost inference, however it fundamentally changes the software observation process

by requiring information that is only available at runtime. The use of this additional

information does allow for significantly less complexity in the analysis process,

but has a few limitations. Some programs are not able to be “run” trivially. In

a high-performance computing setting, where one wants to estimate the cost of

executing a calculation that may take hours, days, or weeks of compute time,

running the program as a prerequisite to estimating the amount of energy it would

consume while being run is nontrivial. More broadly, this approach still utilizes

some static analysis techniques in identifying basic blocks of code execution, but

then switches to dynamic analysis techniques in finding coefficients for an end

solution. If one is already running the program as a step in getting an energy

estimation, a fully dynamic analysis approach would be to use a run of the program

65

as the test to analyze. Existing profiling tools can do this, through different means

of instrumentation or statistical methods [24]. These fully dynamic energy analysis

methods are not the focus of this work.

CHAPTER 4
Implementation And Hardware Benchmarking

In this chapter, I discuss the steps and associated software pieces implemented for

this work. It also explains the reasoning behind using a Raspberry Bi 4 model B

as the hardware testbench and the background of energy analysis in the context

of modern day computing along with various metrics used in the field of energy

aware development. Further, the testing configuration and methodology behind

tests being run are explained. Through the hardware testing process, I demonstrate

a range and average expected energy usage for many of the common instructions

with the ARM instruction set architecture (ISA). These individual instruction energy

values used as the smallest explicit cost blocks within the SEA, finally allowing for

full static, partially automatic analysis of arbitrary assembly files.

4.1 Static Energy Analyzer Process

At its most simple, a SEA is a specialized compiler. Recall back to Chapter 2, where

a compiler is presented as a “translation” tool. In this case, the goal of a static

energy analyzer is to consume an assembly file and output an expected energy

consumption of the program.

The first step in compilation is tokenization, where the input text is split into

small chunks where each chunk represents a fundamental part of the programming

66

67

language in question. As initially detailed in Chapter 2, assembly has relatively

simple grammar. Each line is a separate statement, with each line containing

some selection of labels, mnemonics, operands, and comments. A parser was

originally implemented in Zig, a new programming language targeted primarily for

embedded systems. It supports significant interoperability with C [52], hence why it

was original chosen. Aspirations existed to utilize its interoperability with existing

portions of the GNU tool chain, however the complexity of interfacing with an

existing compiler quickly became out of scope, due primarily to the newness of Zig’s

documentation. The Zig approach had initial benefits, but the language’s newness

and lack of official 1.0 release showed itself in its lack of robust and accessible

graphing library. Thus, an assembly to control flow graph visualization tool was

restarted in Python, with said language choice bringing tools such as mathplotlib,

networkx, and first class string support to the table. This is an intermediate step

chosen to allow for better visualization of an underlying ARM assembly, targeted

towards allowing manual creation of a program’s cost relation. Existing GNU

utilities can output a program’s control flow graph in a specific format, which

is an ideal starting point instead of duplicating work through re-parsing and

reconstructing a CFG from generated assembly. Unfortunately, these utilities output

control flow graphs of programs in higher language forms than assembly. Invoking

-fdump-tree-cfg on a gcc instance on a .c program functions as expected, but a

similar invocation with an intermediate assembly program .s fails.

The SEA that was implemented for this project is semi-automatic. Therefore,

wrapping the PUBS solver in a more accessible command line script was unnecessary.

This project uses PUBS as the static upper bound cost solver for a program.

The other portion of data required for a full static energy analyzer is hardware data

to convert the hypothetical static model into a final energy consumption prediction.

Further detail on how individual assembly instructions were benchmarked can

68

Figure 4.1: Semi-Automated Static Energy Analyzer Process

be found in Chapter 4. It involved manually writing a small amount of assembly

and using a python script to “unroll” that into an assembly file of many individual

repeated instructions. The testing of assembly was aided by the use of a bash script

that managed compilation and processor speed throttling. A visual representation

of the main steps of the static energy analyzer and the software languages/tools

utilized can be seen in Figure 4.1.

69

Figure 4.2: Raspberry Pi Testbench Figure 4.3: Energy Reading Multimeter

4.2 Hardware Choice

The Raspberry Pi 4 model B (further referred to as just the “Pi”) is the hardware

testbench of choice for this project. Raspberry Pis are easily accessible, fully-

functional computers and microcontrollers sold by the Raspberry Pi Foundation.

They all are powered by an ARM architecture. The Pi was the testbench of choice

due to its ARM architecture and Raspberry Pis having a wealth of tooling and

documentation. The specific Pi used has a quad-core Cortex-A72 64 bit processor

with a clock speed of 1.5 Gigahertz. It has 4 GB of RAM memory, as well as support

for wifi, bluetooth, and more. The Pi has two micro HDMI portas as video output

[47]. Its operating system, a Raspberry Pi foundation distribution of Linux, runs

on it off of an SD card. It does not have active cooling, as passive air cooling is

enough to keep its operating temperatures under control. The processor, an ARM

Cortex-A72 has L1 and L2 cache subsystems as a buffer before regular random

access memory [6]. The L1 cache is split into an instruction cache and a data cache.

The Pi is powered by a USB-C cable and the energy reading device is a multimeter

that sits in between the USB-C power cable and the Pi testbench. A picture of the

tool can be seen in Figure 4.3. The multimeter displays both voltage (Volts) and

70

current (Amps). To get power consumption, one must multiply the two based on the

equation [55]:

P = I × V

The multimeter has additional functionality, such as displaying changes in amperage

or voltage over time. For this project, the readings are manually checked during

execution of tests. Synchronizing a logging multimeter with the testbench without

introducing communication overhead fell outside the scope of this project, but is

an area of improvement for future experimentation. Alternative energy tracking

approaches involve utilizing advanced multimeters or using existing sensors on

the computer’s motherboard itself. Interacting with onboard power consumption

registers is challenging and may not result in significant accuracy improvements, as

the interaction to read the energy register also consumes energy. Additionally, the

specific Pi model being used as a testbench is not supported by more robust energy

tracking tools [47] that its Intel x86 and AMD counterparts do have, such as perf,

rapl, Intel PowerLog, etc.

4.3 Energy Testing Background

The energy consumption of processors is an interesting topic for a multitude of

reasons. One estimate projects that servers are approximately 1.5% of all global

energy consumption [17]. Beyond the energy required to run a server farm, an

even larger proportion of energy and other resources, such as water or other liquids

[33] are consumed in cooling server farms [22]. One analysis finds that a processor

contributes up to 30% of a computer’s overall energy consumption [38]. Hence,

understanding more about the inner workings of a processor allows for these costs

to be reduced. Refer back to Chapter 2 for a “software developer” perspective on

71

computer processors, where possible complications with modeling a processor are

discussed. This section will serves as an electrical engineering perspective of how

processors work. This bottom-up approach is applicable to hardware testing as

individual instruction profiling is closer to an electronics problem than a software

engineering task.

Processors can be thought of as extremely complex circuits composed of tran-

sistors. For this project, consider a transistor to simply be the basic building block

of a processor that has two states, ON or OFF [57]. The state of a transistor allows

or prevents current from passing through it. Logic gates are constructed through

stringing transistors together in various ways to achieve various outputs based on

energy “input” to the gate. Whenever a transistor changes state, it must discharge

or recharge an amount of electricity known as its inherent capacitance (C). A large

complex circuit of transistors has two ways in which energy is consumed. Static

energy is energy that is always being consumed, regardless of activity within the

circuit. The amount of static energy consumed depends on supply voltage and

other characteristics of the circuit such as materials and gate length [57]. For this

work, static energy consumption is presumed to generally be a characteristic of

the circuit in question that will not be affected by external changes such as power

supply, temperature, etc. Dynamic energy is the other type of power consumption

of a circuit that is a summation of the energy used in changing transistor state. A

circuit could theoretically stay in one state, meaning all energy consumption would

be static. For modern computers to perform computation, the state of the circuit

is changing often. The amount of energy used dynamically by each transistor is

dependent on various transistor properties such as inherent capacitance, but also

the number of state changes desired and the voltage of the system [57].

One defines energy usage E of a transistor with voltage V at frequency f with

72

inherent capacitance C and activity a as the following equation [57]:

E =
1
2
× C × V2

× f × a

which demonstrates two important relationships. Dynamic energy has a linear

relationship to inherent capacitance (C), frequency (f), and activity (a), and a

quadradic relationship to voltage (V). This equation can be used to model more than

an individual transistor if activity and inherent capacitance for a larger system are

known. Unfortunately, hardware manufacturers rarely release information on the

inherent capacitance of an entire system because as its computation is quite involved

and it is arguably proprietary information. Additionally, knowing the activity a for

an entire system is incredibly complicated, as it requires a simulation of the entire

computation to count every state change that would occur. The relationships are

important, but the equation itself is not easily usable when testing a processor.

Many processors have metrics that allow for comparison on various axes. For

example, many processors have performance metrics that attempt to quantify total

computing power such as clock speed, GigaFLOPS, etc. Processors are incredibly

complex systems that make various tradeoffs (for example, a slower clock speed

processor with superior architecture may be faster than a higher clock speed outdated

circuit). Instead of processor metrics, a common way of comparing processors is

to testing the practically on various benchmarks and compare the results. Energy

analysis metrics exist as well, such as Thermal Design Power (TDP). TDP is a metric

of a processor provided by the manufacturer to explain its cooling needs by showing

the maximum power usage (and thus, heat production) [57]. TDP is a metric useful

for knowing an upper limit, but does not provide further insight into inferring the

amount of dynamic energy consumed by a processor. A useful approach for better

inference of energy consumption and efficiency are correlation metrics. By taking

73

readings of a processor and correlating that with its current activity, one obtains a

better overall model of a processors energy usage. One common energy correlation

metric is Energy Delay Product (EDP) and other weightings of variable influence

such as ED2P [57]. Energy delay product is a value calculated based on the amount

of energy consumed and the time taken to finish computation. For this project,

a correlation approach is used to correlate running a specific instruction with an

energy consumption reading.

4.4 ARM TestingMethodology

This section details the methods used and some complications that arise when

attempting to extract assembly instruction level energy values for the Pi. ARM v8 is

a reduced instruction set (RISC) architecture, with many individual mnemonics for

“instructions” however these instructions can generally be separated into various

groups of very similar instructions. The approach used in [20] for profiling the

low-level virtual machine intermediate representation (LLVM IR) instruction set

architecture involved splitting the instructions into 4 groups, memory M, program

flow B, division D, all other instructions G. The ARM v8 instruction set architecture

can similarly be split into group of instructions. Following the approach presented

in [57], these instruction groups are branching/control flow, integer/logic, floating

point, register movement, compare/test, and all other instructions and mnemonics.

These groupings allow for testing a reduced amount of the total instruction set space

without sacrificing much accuracy. The general approach to correlating an energy

usage value to an individual instruction is to repeat that instruction many times

while tracking power consumption of the computer during the benchmark process

execution. Then power usage per individual instruction is found by dividing

the amount of power used by the number of times the instruction in question

74

1 .arch armv8-a ; various pseudo-ops
2 .text
3 .align 8
4 .global main
5 .type main, %function
6 main: ; function entrypoint
7 .LOOP_START:
8 .cfi_startproc
9 <TESTOP> <TESTOPERANDS> ; repeated ~2000

10 b.al .LOOP_START ; branch always to loop start
11 .cfi_endproc
12 .LOOP_END:
13 ; various end-of-file pseudoops

Listing 4.1: Benchmark Instruction Test File Structure

was run. Some considerations are given to background energy consumption not

attributable to the program being executed. To make the Pi repeat one ARM

instruction repeatedly, a large loop of repeated assembly instructions are used. Each

individual instruction test is generated with the aid of a python metaprogramming

script. The outputted assembly is about lines of repeated assembly instructions that

infinitely loops back to the beginning of the unrolled loop block. An rough outline

of the script can be seen in Listing 4.1. After the test assembly is written and verified

by hand, it then needs to be assembled with the aid of GNU’s as tool [43] and

linked with ld [44], which can alternatively can both be done simply by invoking

gcc on the assembly .s file. After generating the test, assembling, and linking,

it is then run for a significant enough time to ignore initialization, background

processes, operating system overhead, etc. While running the benchmark, voltage

and current are tracked. After stopping the benchmark, energy per instruction

(EPI) can be computed statistically. While many assembly instructions are very

similar, additional complication is introduced by the fact that one instruction may

75

1 add x1, x2, x3
2 add x4. x5. x6
3 add x7, x8, x9

Listing 4.2: addwith out read-after-write

consume a different amount of energy based on its operands. For example, consider

a possible implementation of an add mnemonic test which does not have read-

after-write hazards [57]. As discussed in Chapter 2, processor pipelines provide

speedups through parallelizing as much work as possible, but hazards appear if

one instruction relies directly upon the result of the prior. Thus, an alternative test

approach is to purposefully write the repeated operation such that it encounters as

many hazards as possible:

1 add x1, x2, x3
2 add x4. x1. x6
3 add x5, x4, x7

Listing 4.3: addwith read-after-write hazards

Due to the limited resources available for this project, testing every assembly

instruction for both optimal no-hazards and worst-case all-hazards is unfeasable.

Additionally, since the goal of this hardware testing is to determine an EPI cost

for every assembly instruction, having multiple costs for the same instruction

complicates things. When attempting static upper bound analysis, determining if

and when an instruction creates a data hazard requires practically entire program

simulation. An in-depth simulation of an entire program as a “static” method

is questionable, at best. Static analysis tools generally aim to be helpful at the

compile step, where the computation time required for a whole program simulation

is not usually accessible. Exploring differences in EPI based on data hazards in the

handwritten assembly is one possible extension for this work.

76

4.5 Experimental Energy Per Instruction Results

Clock speed is important in determining individual energy per instruction values.

The Pi comes with a 600 Mhz minimum clock speed and a 1.8 GHz (1,800 MHz)

maximum clock speed. The governance of when processor frequency changes is

one variable that should be controlled, as different frequencies may have different

static and dynamic energy consumption rates [57]. Forcing clock speed limits and

minimums on the Pi was accomplished through the aid of cpupower [7]. Highly

unrolled loops of test instructions were observed at 600, 1200, and 1800 MHz clock

speeds. For all testing, the multimeter kept a voltage reading in the 4.8 - 4.9 range.

EPI values were computed with the formula:

EPI = V × (Ains − Astatic)/(C ∗ σ)

where Ains is the amperage of the Pi during a given instruction’s benchmark

test, Astatic is a baseline amperage of the Pi at the given operating frequency, V

is voltage presumed to be ∼ 4.85, C is the number of cycles per second, and σ

is a tolerance to account for execution of instructions other than ins. Results for

dynamic energy consumption for instructions at various frequencies were found

to be in the same magnitude as other works [20, 57], however the imprecision of

the manual logging system likely introduced significant human error into the mix.

Static energy consumption was checked by running minimal background processes

on the testbench, with the exception of powering a monitor, the terminal session,

and the software test harness to run the individual instruction test. Results can be

seen in Table 4.1.

Following the approaches presented in [57, 20], a smaller subset of assembly

instructions was tested since many instructions perform very similar operations

77

Clock Speed (MHz) 600 800 1000 1200 1400 1600 1800
Idle Current (A) 0.27 0.3 0.32 0.32 0.34 0.32 0.33

Table 4.1: Static Current Consumption at Different Clock Speeds of Pi

with slight differences in areas such as the operands, minor logic swaps, etc. The

main instructions tested fell into categories of integer arithmetic, boolean logic,

floating point arithmetic, data movement, and data load/storage. All energy per

instruction (EPI) values in the following results tables are in pico-joules (pJ).

Instruction
Proc. Freq. (MHz)

600 1,200 1,800

add 596 234 340
sub 383 243 374
mul 170 72 142
div 391 140 116

Table 4.2: Estimated Energy Per Instruction (pJ), integer operations

The integer operations show some variance, surprisingly the division and

multiplication operations having lower EPIs at higher frequencies that addition and

subtraction.

Instruction
Proc. Freq. (MHz)

600 1,200 1,800

nop 162 255 156
and 230 102 204
orr 230 106 199
eor 196 238 247
bic 255 149 213

Table 4.3: Estimated Energy Per Instruction (pJ), bitwise logic operations

Of note in Table 4.3 is the instruction nop, with is “no operation”. The common

logical operations of and, exclusive or, inclusive or all have similar EPIs across clock

speeds. Bitwise clear bic also demonstrated similar EPI.

A similar trend is seen in Table 4.5, where it appears that the EPI is reduced at

a “median” clock speed compared to the slowest limit. One thing worth noting is

78

Instruction
Proc. Freq. (MHz)

600 1,200 1,800

fadd 221 128 213
fadd (db) 238 157 216

fsub 247 115 193
fsub (db) 255 170 204

fmul 204 115 201
fmul (db) 289 132 201

fdiv 196 119 162
fdiv (db) 213 119 196

Table 4.4: Estimated Energy Per Instruction (pJ), floating point operation

that the floating point arithmetic operations have different precision for the same

mnemonic based on their operands. Entries marked as (db) in Table 4.5 were tested

on double precision operands, while those without invoked the single precision

version of the operation.

Instruction
Proc. Freq. (MHz)

600 1,200 1,800

mvn 213 115 173
mov 196 89 170

mov (db) 255 111 182
fmov 255 115 213
cmn 247 106 176
cmp 264 128 216
tst 247 234 235
b 230 85 150

ldr 511 170 199
str 230 204 233

Table 4.5: Estimated Energy Per Instruction (pJ), move, compare, load, store operations

Other instructions of interest can be Table 4.5. mov and mvn copy an argument

(register or immediate) into another register either directly or negated, respectively.

(db), like with floating point arithmetic operations, signifies moving of a double

precision float, while fmov is an instruction to move a single precision floating

point. The other instructions of specific interest are those of ldr and str, for

loading and storing of register values, respectively. For operations interacting with

79

memory, primarily loads and stores, the unrolled loop section was modified such

that the number of instructions per iteration was a power of 2. This consideration

is modeled after the reasoning of better memory utilization as presented in [57].

The mnemonic ldr had a higher EPI than its peers at lower frequencies. Testing

branching mnemonics is questionable as branches themselves are rarely a large

proportion of a compiled program [57].

Testing memory loads and stores is additionally complicated by the fact that time

to execute one instruction may be stalled by waiting on responses from various levels

of cache or other memory. Binary logic did not show many differences between

instructions. nop has the lowest EPI at a lower frequency, but a surprising high EPI

at the middle frequency of 1.2 GHz. This is curious, as nop should theoretically have

extremely low effect on the amount of energy consumed as it is not doing any new

computation. Generally, these intitial experimental findings do not show significant

differences between instructions and dynamic energy consumption, instead clock

speed appears more correlated to EPI.

CHAPTER 5
Discussion

This chapter brings together the hardware testing results and SEA methods and

demonstrates how one would perform static energy analysis on ARM programs.

Additionally, I discuss the various challenges faced in this work for both the SEA

implementation and hardware testbench profiling.

5.1 Example SEA Workflow

A prerequisite to analysis is having something to analyze. This section will follow

the simple example of wanting to estimate the static upper bound cost of a recursive

computation of a number to a power. A simple implementation of this, in C code, is

provided in Figure 5.1.

80

81

Figure 5.1: C Code for PowerOf function

C code is not the desired input format for the static energy analysis process

presented in this work, so first it must be compiled into ARM assembly. De-

pending on platform, a cross compilation tool may be necessary. For example,

aarch64-linux-gnu-gcc is an arm compiler on the x86 platform, instead of just

gcc when a computer that is already ARM using architecture. PowerOf is then

compiled on the command line, as seen in Figure 5.2.

$>gcc powerOf . c −S −fverbose−asm

Figure 5.2: PowerOf Compilation and Flags

The -S compilation flag tells gcc to emit assembly, as opposed to a complete

executable file. The -fverbose-asmflag tells the compiler to attempt to automatically

comment the produced assembly, which helps with readability [19]. The verbose

flag is not necessary, but does help with manually constructing a control flow graph

of the assembly code and translation into a recursive representation. The main

section of the produced assembly for powerOf can be seen in Figure 5.3.

82

Figure 5.3: ARM Assembly of PowerOf function

83

The C programming language and the GCC compiler have a long history and

robust tooling at this point, however if one desired to analyze a program from a

different source language, the compilation flags would look different. The next step

in the static analysis process of an imperative language is to construct a control

flow graph of the program. Some tools exist that can do automatic control flow

graph construction of assembly, however it is much more common for higher level

languages to support easy control flow graph visualizations. In the compilation

process, the produced assembly code typically exists after the control flow graph

has been created and has optimizations applied to it, thus there is little reason to

reconstruct a CFG for the final steps of assembling and linking. For more information

on the compilation process of a program, refer back to Chapter 2.

A manually constructed CFG for the assembly for powerOf can be seen in

Figure 5.4. The various pseudo-operations were stripped for this control flow

representation. The CFG starts at the top block, where the stack pointer is moved

and the arguments base, power are stored in certain registers. Then, the next three

instructions ldr, cmp, and bne constitute the original if statement. The value power

is loaded, compared to 0 (as if the power is 0, any number raised to 0 is 1), and if the

prior comparison is not equal, the program branches to the recursive step. If power

is 0, then the processor moves 1 to a register and always branches to a cleanup

block where the function’s value is returned. In the recursive portion, values are

manipulated until the recursive call is executed through the bl (branch and link)

instruction, which links to the initial method label. After linking, the result from

the recursive call is loaded, the multiplication is performed, and then the result is

returned.

84

Figure 5.4: Control Flow Graph for powerOf Assembly Code

The next step is the flatten the control flow graph into a recursive representation,

as well as construct guards to each of the blocks in the control flow graph. A

more detailed explanation of this process can be found in Chapter 3. The step of

detecting appropriate guard clauses for assembly is non-trivial because of how

little additional information is present in assembly at compile time. Since this step

is manual, multiple valid representations likely exist. If done automatically, an

additional intermediate step is to translate the recursive representation of a program

into a representative cost relation. The recursive representation and translation

into cost expressions can be done at the same time manually for simple programs.

Many optimizations exist upon how representations and costs are found, however

85

manually applying all of them is well beyond the scope of this work. One example

of a possible cost relation representation for the powerOf function is as follows:

(a) CpowerO f (A,B) = k1 + CpowerO f (A,B) {B ≥ 0}

(b) CpowerO f (A,B) = k1 + Cbase(A,B) {B ≥ 0}

(c) Crecur(A,B) = k2 + CpowerO f (A,B − 1) + k3 + Ccleanup(A,B) {B ≥ 1}

(d) Ccleanup(A,B) = k4 {B ≥ 0}

(e) Cbase(A,B) = k5 + Ccleanup(A,B) {B = 0}

k1 := ⟨MOV⟩ + 2 × ⟨STR⟩ + ⟨LDR⟩ + ⟨CMP⟩ + ⟨BNE⟩

k2 := ⟨LDR⟩ + ⟨SUB⟩ + ⟨MOV⟩ + ⟨LDR⟩

k3 := ⟨LDR⟩ + ⟨MUL⟩

k4 := ⟨LDP⟩ + ⟨RET⟩

k5 := ⟨MOV⟩ + ⟨B⟩

Each of the lettered equations represents a single cost equation. The entire system

is the overall cost relation for the original powerOf function shown in Figure 5.1. A,B

are variables to represent the parameters base and power respectively. Each of the ki

variables represent basic cost expressions that are a summation of the sequentially

executed assembly in that block. What they expand to, in terms of individual

instructions, are shown as well. These individual instruction cost values will vary

depending on the chosen method of determining energy per instruction. In this

work, instructions were broadly categorized and then a sample from each category

was tested. Alternatively, one could have a comprehensive energy-per instruction

list that would allow for simple 1-to-1 instruction to energy value conversion. As

discussed later in the challenges section, assembly has a non-trivial amount of

86

Figure 5.5: Example of Possible PowerOf PUBS Input [4, 3]

complexity in how the same instruction may operate differently based on various

factors, making this comprehensive approach not feasible.

Finally, the last step is to translate the cost relation into the required Prolog syntax

for the PUBS solver. In this step, one replaces all the instruction cost placeholders

with actual EPI values. An example cost equation system in proper PUBS syntax

can be seen in Figure 5.5.

It is important to nate that the powerOf PUBS input in Figure 5.5 was provided

by the original authors of PUBS, thus it is not the product of the manually generated

cost relation system constructed above. After creating a valid PUBS cost equation

system, the logic program is then run to automatically infer a static upper bound of

the program, if possible. The PUBS result for Figure 5.5 is:

4 + 10 × nat(A)

The constants 4 and 10 will change depending on how basic costs are chosen.

If one would like to compare static results to dynamic values, one must simply

dynamically test the program in question with various inputs and compare the

87

amount of energy consumed compared to the consumption predicted by the static

model.

5.2 A Non-SEA

Creation of a static energy analyzer is extremely difficult. The approach presented

in [3] for translating imperative programs into cost relations, followed by automatic

upper bound cost inference in [4] is incredibly difficult. Working with assembly

provides a common ground for all instructions, but it is not a target of general tooling.

Manual writing of assembly is slowly becoming more niche as compilers have

become so optimized that writing in a higher level language is not a downside for

performance. In terms of creating a SEA, this means assembly is not a good choice

as analysis medium, in terms of making using of existing frameworks and tools. The

creation of robust assembly analysis tools tailored for static analysis lies much more

in the realm of a potential Ph.D. thesis or enterprise funded research. For example,

a nontrivial amount of static analysis has been used in military applications, such as

static analysis of linear programs [16]. This thesis presents the main pieces necessary

in a static energy analyzer, without the some of the connective tissue required for a

fully automatic static energy analysis tool. Immediate further work would involve

developing an automatic assembly to cost-relation system framework, which is the

largest non-automatic portion of the static analysis process presented in this thesis.

The general process of static cost analysis of a program is presented at length in

Chapter 3. The final step is to replace the basic cost instructions with values of

individual assembly instructions, where are tested for using the approach presented

in Chapter 4. Alternatively, some tools for more complicated processors allow

entire program retracing, in which case one could run a program and find all of the

individual instructions executed with a retracing tool [32]. This approach would

88

be similar to the partial dynamic method presented at the end of Chapter 3, where

it uses some dynamic analysis techniques to remove the need for complex upper

bound analysis.

5.3 Challenges

5.3.1 Static Analysis

The overarching challenge of static analysis is in its immense complexity. The

methods presented in Chapter 3 primarily follow the work of a specialized research

group in Madrid. When performing dynamic program analysis, it is easier to

accomplish an immediate result, through simply running the program in question.

Many further extensions to dynamic analysis exist, typically through various tooling

that observes various different parts of interest on the computer. Regardless, the

time and effort between initial analysis and a result is less than that of static

analysis. If one lets dynamic analysis be oversimplified to “running” the program

with some extra bits and pieces, static analysis does not have an easy comparison.

Static program analysis must interact with a static intermediate representation of

a program, then perform significant mathematical operations upon it to achieve

the desired conversions. The math required is incredibly complex, with many

pitfalls that can easily lead to nonterminal programs unable to be analyzed statically.

This type of mathematical representation of a program and interacting with it is

a foreign concept to many developers, the researcher included. Thus the type of

programming and logic required to automatically convert a control flow graph to a

reduced recursive representation composed of basic cost expressions fell beyond

the scope of this work. For simple programs, manual construction of a cost relation

is more manageable that developing an automated conversion tool.

Control flow graphs are an intuitive representation of how a program moves

5.3.2 Hardware Testing 89

throughout its runtime. In the case of ARM assembly, its rigid structure may lead

one to believe CFGs of assembly are easy to create. This unfortunately turned out to

not be the case, as assembly has a multitude of hidden pitfalls one could encounter

in trying to generate an accurate CFG. Jumps form edges between assembly blocks,

but jumps do not always go precisely to labeled sections of code. For example,

partial execution and varying register sizes (relevant assembly optimizations) means

the same branch instructions may function differently. Unconditional, arbitrary

jumps are incredibly powerful because they allow assembly to express nearly any

possible computation, but following these jumps statically is nontrivial.

5.3.2 Hardware Testing

The largest challenge in working with the Pi testbench arose from the hidden

complexity of testing ARM assembly. Some works similar to this thesis reduce

the necessary tested instruction set through grouping instructions into more broad

groups than even this work does [20]. While ARMv8 is RISC, this means moreso

about the complexity of its individual instructions, not the complexity of the

instruction set itself. Assembly, regardless of actual specification (MIPS, ARM,

WASM, etc.) is hard. The amount of subtle variance between mnemonics is large.

This presents a challenge of determining when to group an instruction with an

existing benchmark and when to create a new benchmark. Manually writing an

unrolled loop to repeat an instruction infinitely while also not allowing for processor

optimization is non-trivial. The differing length of processing pipelines for different

types of instructions makes forcing or avoiding data hazards prohibitively complex.

Additionally, the combinations of different registers and addressing modes for the

same instructions makes determining the thoroughness to which the ISA has been

tested confusing.

Modern computers are incredibly fast, such that determining EPI relies on

5.3.2 Hardware Testing 90

converting a larger measurement down to an individual instruction level. This

conversion relies on a few assumptions, for example, the accuracy of a precise clock

speed not varying throughout the time sample. Furthermore, the tolerance σmay be

a different value or be a different type of effect. For example, perhaps the minimal

background processes only use a constant amount of instructions regardless of

processor frequency. Background polling through top showed all benchmark tests

consuming 100% of the CPU, with all other processes consuming less than a fraction

of a percent. It is possible the assumptions used in conversions for this thesis are

incorrect. Additionally even on a RISC architecture, some instructions may take

more than one cycle to complete [57]. Instructions taking more than a cycle to

execute would reduce the total number of instructions executed in the sample, thus

increasing the EPI.

All of these hardware challenges are easy to discuss, but difficult to track. The Pi

testbench is relatively limited in its access to common dynamic analysis tools due to

its architecture and intended purpose. Unlike some more specially designed systems

with extra registers that show important metrics such as power consumption, the

Pi has only a few registers that are useful. Primarily, the Pi does have a way of

checking its current processor frequency, but lacks support for more power focused

utilities such as ptop, perf, or other trackers for processor stalls.

The limitations and challenges of this work are many, as at nearly every step of

implementation, there are still a few layers of abstraction to follow until getting an

appropriately “accurate” result. With all these limitations known, there is a real

tradeoff between complexity of the tool versus its accuracy. To properly model

a full ISA test and account for variance, one would need to simulate the entire

computation to track the additional constraints and effects happening at the gate

level. If less rigor is permitted, testing difficulty decreases. This work attempted as

5.3.2 Hardware Testing 91

much granularity as possible with the limited resources available in the instruction

set testing modeling and static energy analysis tool.

CHAPTER 6
Conclusion

A wrap up chapter, one step further removed from the results and challenges

presented in Chapter 5. In this chapter, possible extensions and future work are

discussed as well as a more broad conclusion to this independent study in general.

6.1 FutureWork

This work serves as a starting point for static energy analysis. It presents significant

background material on compilers, computer architecture, and program analysis.

Additionally, it summarizes the concept of cost relations and the process of inferring

static cost upper bounds, as presented in [3, 4, 58]. This theory is applied through the

presentation of how to perform static cost analysis of the chosen source language,

ARM assembly. The process presented here is semi-automated, with a fully

automatic energy analysis tool being left as a future work. The PUBS solver

is incredibly helpful for static cost analysis provided a cost relation in proper

formatting. Finding an optimal cost relation that represents an arbitrary program

is nontrivial. Detecting cost relations for higher level languages (regardless of

paradigm) is easier than that of low level languages, however this ease is cancelled

by the additional difficulty of determining what a “basic” instruction is, and what

92

93

an appropriate associated cost would be. For programs written in an imperative

paradigm, the process is to reconstruct a control flow graph, remove unnecessary

information, reduce to a recursive representation, then union with calls-to-size

relations to finally produce an set of recursive cost equations representative of

the imperative program [3]. This work accomplished presenting a CFG of ARM

assembly, but faltered at the automatic recursive representation conversion step.

Thus, an obvious extension is to iterate further to allow for arbitrary automatic cost

relation construction of assembly files.

Another axis of exploration is that of choosing an alternative fundamental cost.

This work considers an assembly instruction to be the fundamental energy cost that

accumulates throughout the lifetime of a program. As discussed in Chapter 5, the

energy differences at an individual instruction level for a RISC processor appear to

be minimal at the level of observation utilized in this work. Other possible basic

costs could be specific instructions (such as dynamic memory allocation), instruction

count (regardless of the actual instructions), etc. Any of these approaches would

require changing the reduction logic used in the CFG to CR transform to preserve

the chosen cost. To achieve an final actual power consumption estimation, some

dynamic processor data is required. This data is what couples the static model to

real-world hardware. Choosing different fundamental costs will affect the degree of

coupling. For example, if a cost system was built around the basic cost being “an

instruction”, then one only needs an average energy per instruction estimate, as

opposed to instruction specific granularity.

Moving to the hardware, the most obvious extension is experimenting on

different hardware. Many other computers exist with the ARM architecture, and the

Pi has unfortunate limitations such as lack of good onboard power and performance

analyzers. Alternative hardware systems with better onboard power registers may

provide alternative ways of measuring power readings throughout instruction

94

testing. Rerunning the existing instruction testsuite on the Pi with a more robust

energy tracking tool may yield more precise results. Reworking of the various

instruction benchmarks to better induce or avoid read-after-write hazards would

be worthwhile to see differences in energy consumption. Extending the testsuite

to further explore more of the ARM v8 instruction set may highlight high power

instructions. Alternatively, ARM has an entire other, more energy efficient mode of

execution called THUMB [6]. Exploring THUMB assembly may yield interesting

results, especially to the world of extremely memory constrained embedded systems

where 64 bit computing is not possible.

Beyond improving existing pieces of this work, the next field of exploration is

utilizing an assembly level SEA as a form of compiler comparison. Comparing

(compiled) high level programming languages is hard, but since they all pass

through assembly as an intermediary between development and execution, it serves

as a common ground. Using a program’s assembly as a shared format, using a SEA

could provide further insight into how different language compilers work. Using a

static energy analyzer specifically has applications to both high compute fields to

save energy costs, and mobile devices to increase battery life.

6.2 Closing

The initial goal of this work was to produce a tool that aids in producing more

energy efficient software. Another broad goal of this work aimed to peel back as

many of the layers of abstraction of modern computing as possible.

This work discusses many of the steps from a “top-down” perspective – where

one starts at the top of writing code. When trying to run code one has written, it is

passed through a compiler (or interpreted, but that is not the focus of this work)

that has various sub-steps of scanning, parsing, semantic analysis, optimization,

95

until assembly is finally emitted. After assembly generation, it is then put through

an assembler and finally a linker to produce the end executable file. Then, when

running a program, the processor has various procedures that challenge the initial

mental model of sequential instruction execution. These complications are primarily

things such as pipelining while avoiding hazards, branch prediction, caching, etc.

Compiler optimizations and cache coherence models specifically have significantly

more depth than was explored in this work. However their existence and discussion

in brief do peel back a few layers of abstraction.

This work also explored a “bottom-up” perspective – where one starts at the

electronics level. Considering processors are incredibly complex circuits, this

thesis explored some fundamental relations in power usage, as well as making

the distinction between static and dynamic energy consumption. The electronics

perspective quickly encountered challenges due to complexity, but it served as an

anchor to explain power usage metrics.

This thesis illuminates many of the steps performed by modern computers

that are shrouded by abstraction. The software analysis pieces associated with

this thesis demonstrate the process of parsing assembly, various basic instruction

tests and helper scripts, and the PUBS solver. The mathematical processes used

in cost analysis are interesting and useful, with many applications in execution

analysis and other forms of static analysis. The use of Prolog as a complex system

model is a novel application of the sometimes discarded logic programming

paradigm. Understanding the algorithm of how one performs static energy analysis

is valuable. This work faced challenges (see Chapter 5) in developing an arbitrary,

fully automatic static energy analysis tool, but these challenges brought new

abstractions and considerations to light. Therefore, this work successfully elucidates

many assumptions and abstractions between programming and computer energy

consumption.

Afterword

I believe this thesis has parallels to my undergraduate career at Wooster. As a

high school student, I chose a college with the perspective of “I make it something

meaningful, a degree can come from anywhere”. As an underclassman, I struggled

in knowing if I was making the most of my time as a student. As an upperclassman,

I feel that my highschool perspective was limited. I would now add an extension

to my original perspective. The people make it meaningful. Without tracing

needless hypotheticals, I could have sought a computer science degree anywhere.

Academically, the professors I have interacted with have shaped my experiences,

not only through the technical content, but by seeing their experiences and how

they engage with the field. Socially, my peers have been a tremendous positive

influence that have taught me many things about expressiveness, communication,

and emotion. While constrained to a year (and honestly, more like a semester

and a half), this thesis has had similar ups and downs to my four years at the

College. Excitement in getting started, being exposed to new ideas and topics

through background literature. Trudging through coursework and literature that is

necessary yet not enthralling. Questioning my progress at intermediate points in

the process. Reframing the goal to better understand my accomplishments. For my

degree, I take pride in its completion, even if mistakes were made in the process.

For this thesis, I also am proud of its completion, even if it took a page out of

many academic research endeavours and fell short of its original, overly-ambitious

goals. Working through this project has been a true challenge due to its length,

96

97

complexity, and independence. Even if the software product and experimental

results are not the deliverable I envisioned, the journey has been informative. The

world of computer science and technology is incredibly broad and incredibly deep.

Tricking rocks into thinking really is quite complex. As fascinating as static analysis

is, the black magicry of compilers and the seemingly millions of complications gives

me pause for further pursuit of this field. Regardless, I learned about the existence

of many challenges in computation and can proudly believe that I am closer to

understanding how computers actually work, behind the many abstractions in my

original mental model. Thank you for reading.

References

[1] Sarah Abdulsalam et al. “Program energy efficiency: The impact of language,

compiler and implementation choices”. In: International Green Computing

Conference. 2014, pp. 1–6. doi: 10.1109/IGCC.2014.7039169.

[2] Wilhelm Ackermann. “Zum Hilbertschen Aufbau der reellen Zahlen”. In:

Mathematische Annalen 99, BF01459088 (1928), pp. 118–133. doi: 10.1007/

BF01459088. url: https://doi.org/10.1007/BF01459088 (page 40).

[3] E. Albert et al. “Cost Analysis of Java Bytecode”. In: Programming Languages

and Systems. Ed. by Rocco De Nicola. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 157–172. isbn: 978-3-540-71316-6 (pages 42–46, 86–87,

92–93).

[4] Elvira Albert et al. “Closed-Form Upper Bounds in Static Cost Analysis”. In:

Journal of Automated Reasoning 46.2 (Feb. 2011), pp. 161–203. doi: 10.1007/

s10817-010-9174-1. url: https://doi.org/10.1007/s10817-010-9174-1

(pages 19, 37, 39–41, 47–48, 50–57, 61, 86–87, 92).

[5] Elvira Albert et al. “Cost Relation Systems: A Language-Independent Target

Language for Cost Analysis”. In: Electronic Notes in Theoretical Computer Science

248 (2009). Proceedings of the Eighth Spanish Conference on Programming

and Computer Languages (PROLE 2008), pp. 31–46. issn: 1571-0661. doi:

https://doi.org/10.1016/j.entcs.2009.07.057. url: https://www.

sciencedirect.com/science/article/pii/S1571066109002801 (page 41).

98

https://doi.org/10.1109/IGCC.2014.7039169
https://doi.org/10.1007/BF01459088
https://doi.org/10.1007/BF01459088
https://doi.org/10.1007/BF01459088
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/https://doi.org/10.1016/j.entcs.2009.07.057
https://www.sciencedirect.com/science/article/pii/S1571066109002801
https://www.sciencedirect.com/science/article/pii/S1571066109002801

REFERENCES 99

[6] ARM Developer Guide. Accessed on October 15, 2023. url: https://developer.

arm.com/ (pages 12, 22, 29–30, 69, 94).

[7] Various Authors. cpupower Manual. https://linux.die.net/man/1/

cpupower. 2024 (page 76).

[8] Abhinav Bhatele et al. “There goes the neighborhood: performance degra-

dation due to nearby jobs”. In: Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis. 2013, pp. 1–12

(page 3).

[9] Emily R. Blem, Jai Menon, and Karthikeyan Sankaralingam. “Power struggles:

Revisiting the RISC vs. CISC debate on contemporary ARM and x86 architec-

tures”. In: 2013 IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA) (2013), pp. 1–12. url: https://api.semanticscholar.

org/CorpusID:243246 (page 12).

[10] Bugseng. Parma Polyhedra Library. https://www.bugseng.com/content/

parma-polyhedra-library. Accessed on: 2/18/2024. 2024 (page 61).

[11] Andreu Carminati, Renan Augusto Starke, and Rômulo Silva de Oliveira. “On

the use of static branch prediction to reduce the worst-case execution time

of real-time applications”. In: Real-Time Systems 54.3 (July 2018), pp. 537–561.

issn: 1573-1383. doi: 10.1007/s11241-018-9306-y. url: https://doi.org/

10.1007/s11241-018-9306-y (pages 28–30).

[12] Pohua P Chang and W-W Hwu. “Inline function expansion for compiling C

programs”. In: Proceedings of the ACM SIGPLAN 1989 Conference on Program-

ming language design and implementation. 1989, pp. 246–257 (page 9).

[13] Chilton Computing - Atlas 50th Anniversary. Accessed on October 15, 2023. url:

http://www.chilton-computing.org.uk/acl/technology/atlas50th/

p005.htm (page 23).

https://developer.arm.com/
https://developer.arm.com/
https://linux.die.net/man/1/cpupower
https://linux.die.net/man/1/cpupower
https://api.semanticscholar.org/CorpusID:243246
https://api.semanticscholar.org/CorpusID:243246
https://www.bugseng.com/content/parma-polyhedra-library
https://www.bugseng.com/content/parma-polyhedra-library
https://doi.org/10.1007/s11241-018-9306-y
https://doi.org/10.1007/s11241-018-9306-y
https://doi.org/10.1007/s11241-018-9306-y
http://www.chilton-computing.org.uk/acl/technology/atlas50th/p005.htm
http://www.chilton-computing.org.uk/acl/technology/atlas50th/p005.htm

REFERENCES 100

[14] William F Clocksin and Christopher S Mellish. Programming in PROLOG.

Springer Science & Business Media, 2003 (pages 58, 60).

[15] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd. The

MIT Press, 2009. isbn: 0262033844 (page 30).

[16] George B. Dantzig and S. M. Johnson. Upper Bounded Variables in Linear

Programming. Tech. rep. Defense Technical Information Center, 1957. url:

https://apps.dtic.mil/sti/tr/pdf/AD0605077.pdf (page 87).

[17] Jonathan G. Koomey. Estimating Total Power Consumption by Servers in the

US and the World. url: http://www-sop.inria.fr/mascotte/Contrats/

DIMAGREEN/wiki/uploads/Main/svrpwrusecompletefinal.pdf (page 70).

[18] Maurizio Gabbrielli and Simone Martini. Programming languages: principles

and paradigms. Springer Nature, 2023 (page 10).

[19] GNU Project. GCC(1). Accessed: 24th March 2024. Free Software Foundation.

2024. url: https://man7.org/linux/man-pages/man1/gcc.1.html (page 81).

[20] Neville Grech et al. “Static analysis of energy consumption for LLVM IR

programs”. In: Proceedings of the 18th International Workshop on Software and

Compilers for Embedded Systems. ACM, June 2015. doi: 10.1145/2764967.

2764974. url: https://doi.org/10.1145%2F2764967.2764974 (pages 20, 73,

76, 89).

[21] Joel Hestness, Stephen W Keckler, and David A Wood. “GPU computing

pipeline inefficiencies and optimization opportunities in heterogeneous CPU-

GPU processors”. In: 2015 IEEE International Symposium on Workload Character-

ization. IEEE. 2015, pp. 87–97 (page 26).

[22] In the Data Center, Power and Cooling Costs More Than the IT Equipment It

Supports. url: http://www.electronics-cooling.com/2007/02/in-the-

https://apps.dtic.mil/sti/tr/pdf/AD0605077.pdf
http://www-sop.inria.fr/mascotte/Contrats/DIMAGREEN/wiki/uploads/Main/svrpwrusecompletefinal.pdf
http://www-sop.inria.fr/mascotte/Contrats/DIMAGREEN/wiki/uploads/Main/svrpwrusecompletefinal.pdf
https://man7.org/linux/man-pages/man1/gcc.1.html
https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145%2F2764967.2764974
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/

REFERENCES 101

data-center-power-and-cooling-costs-more-than-the-it-equipment-

it-supports/ (page 70).

[23] Joseph Ingeno. Software architect’s handbook: Become a successful software architect

by implementing effective architecture concepts. Packt, 2018 (page 4).

[24] Joseph Ingeno. Software architect’s handbook: Become a successful software architect

by implementing effective architecture concepts. Packt, 2018 (page 65).

[25] ISO/IEC. ISO/IEC 14882:2011 - Programming languages - C++. https://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf. Working

Draft, Standard for Programming Language C++. 2011 (page 18).

[26] Neil E. Johnson. Code size optimization for embedded processors. Tech. rep. UCAM-

CL-TR-607. University of Cambridge, Computer Laboratory, Nov. 2004. doi:

10.48456/tr-607. url: https://www.cl.cam.ac.uk/techreports/UCAM-CL-

TR-607.pdf (page 1).

[27] Kazhuu. asm2cfg: A tool for generating control flow graphs from assembly code.

https://github.com/Kazhuu/asm2cfg. 2024.

[28] Steve Kerrison. Monitoring the energy consumption of a Raspberry Pi with a

MAGEEC Wand. Aug. 2016. doi: 10.13140/RG.2.2.13289.90725 (pages 23,

32).

[29] Steve Kerrison and Kerstin Eder. “Energy Modeling of Software for a Hard-

ware Multithreaded Embedded Microprocessor”. In: ACM Trans. Embed.

Comput. Syst. 14.3 (Apr. 2015). issn: 1539-9087. doi: 10.1145/2700104. url:

https://doi.org/10.1145/2700104.

[30] Daniel Kusswurm. Modern X86 Assembly Language Programming. Springer,

2014 (page 11).

http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
https://doi.org/10.48456/tr-607
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.pdf
https://github.com/Kazhuu/asm2cfg
https://doi.org/10.13140/RG.2.2.13289.90725
https://doi.org/10.1145/2700104
https://doi.org/10.1145/2700104

REFERENCES 102

[31] Ario Liyan. What is a Programming Paradigm? Accessed: 12 February 2024.

2023. url: https://medium.com/@Ariobarxan/what-is-a-programming-

paradigm-ec6c5879952b (page 58).

[32] LLVM Project. LLDB Documentation: Intel Processor Trace. https://lldb.llvm.

org/use/intel_pt.html. 2024 (page 87).

[33] Microsoft’s Datacenter Liquid Cooling Innovation. url: https://news.microsoft.

com/source/features/innovation/datacenter-liquid-cooling/ (page 70).

[34] Bernard M. E. Moret. The Theory of Computation. Addison-Wesley, 1998. isbn:

0-201-25828-5 (page 31).

[35] Abdeen Mustafa Omer. “Energy use and environmental impacts: A general

review”. In: Journal of renewable and Sustainable Energy 1.5 (2009) (page 2).

[36] David Patterson and John Hennessy. Computer Organization and Design. 4th.

Morgan Kaufmann, 2009. isbn: 978-0-12-374493-7 (pages 25, 27–29).

[37] David A. Patterson and Carlo H. Sequin. “RISC I: A Reduced Instruction Set

VLSI Computer”. In: Proceedings of the 8th Annual Symposium on Computer

Architecture. ISCA ’81. Minneapolis, Minnesota, USA: IEEE Computer Society

Press, 1981, pp. 443–457 (pages 11, 25–26).

[38] Mandy Patts. Microprocessor Power Impacts. url: https://tbach.web.cern.

ch/tbach/thesis/literature/power_density_Pant-DASS.pdf (page 70).

[39] Darrell Pearce. Evolution of Programming Languages. Accessed: 12 February

2024. 2022. url: https://www.cs.sjsu.edu/~pearce/modules/lectures/

languages2/concepts/evolution.html (page 59).

[40] Rui Pereira et al. “Helping Programmers Improve the Energy Efficiency of

Source Code”. In: Proceedings of the 39th International Conference on Software

Engineering Companion. ICSE-C ’17. Buenos Aires, Argentina: IEEE Press,

https://medium.com/@Ariobarxan/what-is-a-programming-paradigm-ec6c5879952b
https://medium.com/@Ariobarxan/what-is-a-programming-paradigm-ec6c5879952b
https://lldb.llvm.org/use/intel_pt.html
https://lldb.llvm.org/use/intel_pt.html
https://news.microsoft.com/source/features/innovation/datacenter-liquid-cooling/
https://news.microsoft.com/source/features/innovation/datacenter-liquid-cooling/
https://tbach.web.cern.ch/tbach/thesis/literature/power_density_Pant-DASS.pdf
https://tbach.web.cern.ch/tbach/thesis/literature/power_density_Pant-DASS.pdf
https://www.cs.sjsu.edu/~pearce/modules/lectures/languages2/concepts/evolution.html
https://www.cs.sjsu.edu/~pearce/modules/lectures/languages2/concepts/evolution.html

REFERENCES 103

2017, pp. 238–240. isbn: 9781538615898. doi: 10.1109/ICSE-C.2017.80. url:

https://doi.org/10.1109/ICSE-C.2017.80 (page 2).

[41] Rui Pereira et al. “Ranking programming languages by energy efficiency”.

In: Science of Computer Programming 205 (2021), p. 102609. issn: 0167-6423.

doi: https://doi.org/10.1016/j.scico.2021.102609. url: https:

//www.sciencedirect.com/science/article/pii/S0167642321000022

(page 2).

[42] Robert G. Plantz. Introduction to Computer Organization: ARM Assembly Lan-

guage Using Raspberry Pi. https://bob.cs.sonoma.edu/IntroCompOrg-RPi/intro-

co-rpi.html. Accessed: 09-01-2023 (pages 10–11, 13, 19, 22).

[43] GNU Project. AS(1) - Linux manual page. man7.org. 2024. url: https://man7.

org/linux/man-pages/man1/as.1.html (page 74).

[44] GNU Project. LD(1) - Linux manual page. man7.org. 2024. url: https://man7.

org/linux/man-pages/man1/ld.1.html (page 74).

[45] The Linux Documentation Project. objdump - display information from object files.

https://man7.org/linux/man-pages/man1/objdump.1.html. Linux. 2024

(page 9).

[46] C. V. Ramamoorthy and H. F. Li. “Pipeline Architecture”. In: ACM Comput.

Surv. 9.1 (Mar. 1977), pp. 61–102. issn: 0360-0300. doi: 10.1145/356683.356687.

url: https://doi.org/10.1145/356683.356687 (page 26).

[47] Raspberry Pi Documentation. Accessed on October 15, 2023. url: https://www.

raspberrypi.com/documentation/ (pages 13, 28, 69–70).

[48] Margaret Rouse. Superscalar Processor Definition. Accessed: 1 March 2024.

2019. url: https://www.techopedia.com/definition/2897/superscalar-

processor (page 29).

https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://man7.org/linux/man-pages/man1/as.1.html
https://man7.org/linux/man-pages/man1/as.1.html
https://man7.org/linux/man-pages/man1/ld.1.html
https://man7.org/linux/man-pages/man1/ld.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.techopedia.com/definition/2897/superscalar-processor
https://www.techopedia.com/definition/2897/superscalar-processor

REFERENCES 104

[49] Cagri Sahin et al. “Initial Explorations on Design Pattern Energy Usage”.

In: Proceedings of the First International Workshop on Green and Sustainable

Software. GREENS ’12. Zurich, Switzerland: IEEE Press, 2012, pp. 55–61. isbn:

9781467318327 (page 2).

[50] James E Smith. “A study of branch prediction strategies”. In: 25 years of the

international symposia on Computer architecture (selected papers). 1998, pp. 202–

215 (page 28).

[51] Douglas Thain. Introduction to Compilers and Language Design. Independently

Published, 2020. url: URL (pages 6–10, 15, 18–19, 21).

[52] The Zig Authors. Zig Programming Language. https://ziglang.org/. 2024

(page 67).

[53] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. “Power Analysis of Em-

bedded Software: First Step Towards Software Power Minimization”. In:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 2 (Jan. 1995),

pp. 437–445. doi: 10.1109/92.335012 (pages 41, 64).

[54] Alan M. Turing. “On Computable Numbers, with an Application to the

Entscheidungsproblem”. In: Proceedings of the London Mathematical Society,

Series 2 42 (1936), pp. 230–265 (pages 31, 33, 48).

[55] Paul Peter Urone and Roger Hinrichs. College Physics 2e. Houston, Texas:

OpenStax, July 2022. url: https://openstax.org/books/college-physics-

2e/pages/1-introduction-to-science-and-the-realm-of-physics-

physical-quantities-and-units (page 70).

[56] Hans Vandierendonck et al. “By-passing the out-of-order execution pipeline to

increase energy-efficiency”. In: May 2007, pp. 97–104. doi: 10.1145/1242531.

1242548 (page 30).

URL
https://ziglang.org/
https://doi.org/10.1109/92.335012
https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
https://doi.org/10.1145/1242531.1242548
https://doi.org/10.1145/1242531.1242548

REFERENCES 105

[57] Evangelos Vasilakis. An Instruction Level Energy Characterization of ARM

Processors. Tech. rep. Foundation of Research and Technology Hellas, Institute

of Computer Science, 2015. url: https://projects.ics.forth.gr/carv/

greenvm/files/tr450.pdf (pages 71–73, 75–76, 79, 90).

[58] Ben Wegbreit. “Mechanical Program Analysis”. In: Commun. ACM 18.9 (Sept.

1975), pp. 528–539. issn: 0001-0782. doi: 10.1145/361002.361016. url:

https://doi.org/10.1145/361002.361016 (pages 40–41, 92).

[59] Collin Winter and Tony Lownds. PEP 3107: Function Annotations. Python

Enhancement Proposal 3107. Python Software Foundation, 2006 (page 18).

[60] Wolfgang Wögerer. A survey of static program analysis techniques. Tech. rep.

Citeseer, 2005 (pages 30–31, 33).

https://projects.ics.forth.gr/carv/greenvm/files/tr450.pdf
https://projects.ics.forth.gr/carv/greenvm/files/tr450.pdf
https://doi.org/10.1145/361002.361016
https://doi.org/10.1145/361002.361016

	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background
	Compilers
	At a Glance
	Beneath the Hood

	Assembly Language
	Assembly Languages
	Tokenizing ARM
	Parsing ARM
	Abstract Syntax Trees
	Type Systems and Semantic Analysis
	Intermediate Representations and Control Flow Graphs

	Modern CPU Complications
	Running a Program
	Caching
	Pipelining
	Branch Prediction

	Energy Analysis
	Static vs. Dynamic

	Program Cost Analysis
	Recurrence Relations
	Cost Relations
	Cost Relation Extraction
	Automatic Upper Bound Inference
	Upper Bound Node Counting
	Upper Bounding Individual Node Cost
	Automic Upper Bound Issues

	Practical Upper Bound Solver (PUBS)
	Prolog Overview
	PUBS Interface

	Partial Dynamic Cost Analysis

	Implementation And Hardware Benchmarking
	Static Energy Analyzer Process
	Hardware Choice
	Energy Testing Background
	ARM Testing Methodology
	Experimental Energy Per Instruction Results

	Discussion
	Example SEA Workflow
	A Non-SEA
	Challenges
	Static Analysis
	Hardware Testing

	Conclusion
	Future Work
	Closing

	References
	Index

