
Patrick May (Advisor: Drew Guarnera)
Static Energy Analysis of Low-Level Programs

Program Analysis
- Observe existing computer programs to improve them
- Make faster, smaller, more accurate, more efficient, etc.

Static Analysis:
Performed “statically”, at
compile time or earlier

Dynamic Analysis:
During runtime,
sometimes “profiling”

Can we use static analysis

to predict the energy cost

to run a program?

Software Considerations
There are many steps between writing a program and the
“code” run on the computer. These steps should be
acknowledged in the static analysis process.

Compilation
- Programs are compiled (or interpreted) to be run
- Compilers translate high level programming languages into

a different form, typically assembly language
- Abstracts hard and tedious tasks from developer, but also

lessens understanding of how a computer works

Hardware Considerations
Programs run on computers that can be drastically different
architecturally. Modern processors perform techniques that
can affect the end power cost, thus should be acknowledged.

Reduced Instruction Set
Computer (RISC)

- Simpler instructions
- 1 cycle per instruction
- Chosen platform for

project

Complex Instruction Set
Computer (CISC)

- Larger instructions
- ≥1 cycle(s) per instruction

Cache Hierarchies
- Programs interact with memory
- Caches allow for speedups
- Misses slow down program,

increasing power consumption

Instruction Pipelines
- Parallelize instruction exec.
- Shorter for RISC CPUs
- Instructions reliant on prior

data cause stalls, increasing
power consumption

Instruction Benchmarking
The static program model requires real world data to get a
parameterized real energy prediction. A Raspberry Pi 4
Model B was used to test largely unrolled assembly loops

Static Cost Analysis
A mathematical framework and process to translate a
program and automatically infer an upper bound cost

Future Work
- Alternative classification of basic costs

- Automation of cost relation extraction

- Testing for more forms of instruction execution

- Experimentation on alternative hardware platforms

- Exploration of alternative analytical frameworks

1. Source Code

2. Low Level Representation
(ARM Assembly)

3. Control Flow Graph

4. Cost Relation Form
5. Solved in PUBS

- Practical Upper Bound Solver
- Prolog Logic System

Alternative Analysis Methods
- Dynamic block execution analysis
- Different fundamental cost expression selection

	Slide 1: Static Energy Analysis of Low-Level Programs

